
NRL Report 8367 5; 
EOTPO Report No. 57 z 

Passive Infrared Surveillance, 
Part II: Threshold-Crossing Receivers 

RICHARD A. STEINBERG 

Electra-Optical Technology Program Ofice (EOTPO) 

January 24, 1980 

c 1rCN 
@%A 

@  

0 ’ I a c 
J + l 

+t* 

ELECTRO-OPTICAL TECHNOLOGY PROGRAM OFFICE 
NAVALRESEARCHLABORATORY 

Washington, D.C. 20375 

Approved for public release; dislribution unlimited. 



Reviewed and approved by: 
Dr. John M. MacCallum, Jr. 
Head, Electra-Optical Technology Program Office 



SECURITY CLASS,F,CAT,ON OF THIS PAGE ,‘Hhen Data Entered) 

I 
REF’ORTDOCUMENTATlON PAGE 

REPDRTNUMBER 2. GOVT ACCESSION NC 

NRL Report 8367 
T,TLE (and SubtItle) 

PASSIVE INFRARED SURVEILLANCE, 
PART II: THRESHOLD-CROSSING RECEIVERS 

AUTHORfr) 

Richard A. Steinberg 

PERFORMING ORGANIZATION NAME AND ADDRESS 

Naval Research Laboratory 
Washington, D.C. 20375 

CONTROLLING OFFICE NAME AND ADDRESS 

MONlTORlNG AGENCY NAME .5 ADDRESS(,, d,,lsren, fmm Controtllna Office) 

DlSTRlBUTlON STATEMENT (of fhls Re~orl) 

Approved for public release; distribution unlimited. 

READ INSTRUCTIONS 
BEFORECOMPLETINGFORM 

3. RECIPIENT’S CATALOG NUMRER 

5. TYPE OF REPORT h PERIOD COVERED 
Interim report on a continumg 
NRL problem 

6. PERFORMING ORG. REPORT NUMBER 

EOTPO Report 57 
8. CONTRACT OR GRANT NUMBER(a) 

10. PROGRAM ELEMENT, PROJECT, TASK 
AREA 0 WORK UNIT NUMBER5 

NRL Problem NOl-29 

12. REPORT DATE 

January 24, 1980 
13. NUMBER OF PAGES 

59 
(5. SECURITY CLASS. (Of lhla report) 

UNCLASSIFIED 
15,. DECLASSlFICATION/DOWNGRADlNG 

SCHEDULE 

OlSTRlBUTlON STATEMENT (of the abstract entered In Block 20, If different born Report) 

SUPPLEMENTARY NOTES 

KEy WORDS (cmtlme 0” I~YM~ slds If neceasuy and ldantlly by black number) 

Infrared technology 
Electra-Optical Technology Program Office (EOTPO) 
Electra-optics 
Surveillance 

ABSTRACT (Conllnve M reverse 4Ide.lf necs#aary snd Idenllfy by block number) 

A number of infrared passive surveillance receivers are analyzed with the theory developed in 
Part I (NRL Report 8320). The specific problem of interest is the detection of low-contrast point. 
source targets against high-contrast structured backgrounds. A new and promising approach to 
signal processing is proposed for minimizing background-induced false alarms while retaining maxi- 
mum target-detection sensitivity. 

It is shown that improvements in focal-plane-array (FPA) technology employing time delay am 
integration (TDI) may afford “excess” detector sensitivity that can be intentionally sacrificed in th 
interest of enhanced performance against structured scenes. 

EDlTlON OF I NOV 65 IS OBSOLETE 
S/N 0102-014-6601 

DD FORM 
I JAN 73 1473 

SECURITY CLASSIFICATION OF THIS PAGE (men Data Enterad) 
i 





CONTENTS 

GLOSSARY OF SYMBOLS .............................................................................................. V 

INTRODUCTION ............................................................................................................. 1 

BACKGROUND ............................................................................................................... 3 

Concepts and Definitions ........................................................................................ 3 

Current Statistics ..................................................................................................... 6 

Threshold-Crossing Rates ....................................................................................... 9 

Mean-Crossing Times and Times of Closest Approach ........................................ 10 
Fixed-Threshold Processors .................................................................................. 11 

Initial Assessment of Adaptive Vs Fixed-Threshold Processors ............................ 12 

Uniform Scenes of Known Brightness .................................................................. 14 
Uniform-Background False-Alarm Penalty ........................................................... 14 
Time Delay and Integration .................................................................................. 15 

Ideal (CFAR) Adaptive-Threshold Receivers ......................................................... 15 

Mean Video Estimators ........................................................................................... 17 

UNIFORM SCENES OF UNKNOWN BRIGHTNESS ..................................................... 18 

Fixed-Threshold Processors .................................................................................... 19 

Adaptive-Threshold Processors ............................................................................... 19 

STRUCTURED SCENES .................................................................................................. 22 

Slowly Varying Scenes ............................................................................................. 22 

Model Filters and Backgrounds ............................................................................... 24 

Figure 6 Processor ................................................................................................... 26 

Improved Processors ............................................................................................... 27 

Noise Bandwidth and Dwell Time ........................................................................... 33 

The Promise of Focal-Plane-Array Technology ...................................................... 35 

C 
zz 
c-2 
i-- 
a” 
4.A 
L,,O 
cm 
mr 

IT 
c- II( 

. . . 
111 



APPENDIX P.-Calculating the Average Current from Background Data . . . . . . . . . . . . . . . . . . . . . . . 37 

APPENDIX B-Efficient Estimators for Nonstationary Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

APPENDIX C-Square Root of a Gaussian Random Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

iv 



GLOSSARY OF SYMBOLS 

c 
rz 
r: 
K 
c/: 
cr: 
C 
-r 
F;: 
t; 

Symbol 

A (t> 

A de1 

AT 

B(t) 

BLIP 

BSI 

BSL 

C 

CFAR 

d 

e 

EI.1 

ESN 

f 

f# 

f 

fA 

f+ylffy 

FAP 

FAR 

Definition 

Eq. ((29) 

Eq. (A3) 

Eq. (C9) 

Eq. (74b) 

Eq. (~6) 

Eq. (16) 

Eq. (2) 

Es. (11) 

Es. (A4) 

Eq. (~6) 

Eq. (C7) 

Eq. (B41) 

Eq. (52) 

Es. (8) 

A Gaussian random process (generally nonstationary) 

Detector active area 

Adaptive threshold 

Square root of a Gaussian random process 

Background (quantum noise) limited photodetector 

Background-structure-induced fluctuations in the 
ensemble-average video signal 

Background-structure limited (performance regime) 

Ratio of noise variance to scene radiance 

Constant false-alarm rate (performance regime) 

Focal length of optics [cm] 

Electronic charge [Cl 

Statistical expectation operator (ensemble average) 

Efficient shot-noise estimator (for the rms value 
of nonstationary shot noise) 

Electrical frequency [Hz] 

Optical focal-length ratio 

Two-dimensional vector spatial frequency 

Probability density function of A (t) 

Probability density function of ri r conditioned on v r 

False-alarm penalty 

False-alarm rate 

V 



FPA 

FT 

h(t) 

1; (0 

H(f) 

ho(t) 

Ho(f) 

4 

IO 

IRST 

J 

K 

Ko 

MA 

mu 

mJ 

Eq. (11) 

Eq. (17) 

Eq. (11) 

Eq. (31) 

Eq. (B20) 

Eq. (4) 

Eq. (3) 

Es. (2) 

Eq. (A4) 

Eq. (Cl) 

Eq. (Cl) 

Eq. (A4) 

Eq. (2) 

Eq. (3) 

Eq. (36) 

Eq. (74a) 

Eq. (~8) 

Eq. (A2) 

Eq. (9) 

Eq. (12) 

Focal-plane array 

Fixed threshold 

Impulse response of the postdetector electrical filter 

Time derivative of /I (1) 

Transfer function of the postdetector filter; 
Fourier transform of l/(t) 

Impulse response of the threshold filter 

Fourier transform of /r,(t) 

Subinterval of the time interval lo 

An interval of time 

Infrared search and track 

Number of threshold crossings (an integer random variable) 

Threshold-gain constant 

Ratio of the focal-plane irradiance to the scene radiance 

Expected value of A (t) 

Expected value of B (t > 

Expected value of the focal-plane irradiance 

Expected value of the crossing count 

Threshold-crossing rate (the time derivative of mJ) 

Rate of positive-slope zero crossings 

Scene spatial radiance distribution 

Two-dimensional spatial Fourier transform of rnL (r) 

Mean photon flux incident on a photodetector 

Expected value of the unfiltered current X(t) 

Expected value of the video signal Y(t) 

vi 



mti 

4 

fiY 

m,Fi Y 

m. ‘T Y 

A4 

MTF 

N 

NE1 

P(r) 

Y (f) 

pD 

P FA 

QNL 

r 

RI 

rect (.> 

sinct.1 

L 

t,,,, 

[TC 

r, 

Eq. (13) 

Eq. (147b) 

Eq. (60) 

Eq. (61) 

Eq. (B29) 

Eq. (151) 

Eq. (~6) 

Eq. (58) 

Eq. (A71 

Eq. (A71 

Eq. (6) 

Eq. (7) 

Eq. (A7) 

Es. (AS) 

Eq. (B9) 

Eq. (Bll) 

Eq. (3) 

Eq. (44) 

Eq. (42) 

Eq. (1) 

Es. (31) 

Expected value of f(t) 

Time-advanced and time-delayed versions of my(t) 

Estimate for my 

Expected value of fi y 

Expected value of C? y 

Noise bandwidth parameter of the postdetector 
electrical filter 

Modulation transfer function 

Number of series TDI detectors 

Noise-equivalent irradiance 

“Pupil function” of a focal-plane detector 

Two-dimensional spatial Fourier transform of P(r) 

Probability of detection 

False-alarm probability 

Quantum-noise limited (performance regime) 

Two-dimensional focal-plane location vector 

Photodetector current responsivity [A.W-‘I 

“Rectangle function” depicted in Fig. B3 

Fourier transform of rect(e) 

Time 

Time of closest approach 

Mean-crossing time 

Threshold-crossing time (a random variable) 

Delay time; sensor dwell time 

CL: 
2! 
c: 
P 
Lx*’ 
cr: 
c.u: 
L-l-i 
-“m 
C 
IT 
cz 

vii 



T(to) 

TF 

TDI 

u 

V 

W(k) 

x0 

XI 

X(f) 

Y(t) 

Yo 

Y,(t) 

a 

a:,.,,, 
Af 

Afo 

(Af) nns 

AmJ 

E 

E- ml, 

E- 
“Y 

77 

pt.) 

Eq. (8) 

Eq. (~6) 

Eq. (39) 

Eq. (A6) 

Eq. (B8) 

Eq. (115) 

Eq. (115) 

Eq. (9) 

Eq. (10) 

Eq. (47) 

Eq. (31) 

Eq. (54) 

Eq. (B40) 

Eq. (25) 

Eq. (54) 

Eq. (48) 

Eq. (4) 

Eq. (B27) 

Eq. (63) 

Eq. (64) 

Eq. L42) 

Eq. (B41) 

Duration of time interval IO 1.~1 

System frame time [sl 

Time delay and integration 

Normalized mean threshold level 

Focal-plane scan velocity 

Time-sampled version of Y(t) 

DC component of the detected photocurrent, in the 
absence of an object in the sensor’s field of view [Al 

Peak contrast of an object against its 
background [dimensionless] 

Unfiltered photocurrent [Al 

Filtered photocurrent [Al 

Sample function of Y. 

Threshold current [Al 

Ratio of noise bandwidths 

Second partial derivative with respect to u y 

Noise bandwidth of H(f) 

Noise bandwidth of Ho(f) 

Rms bandwidth of H(f) 

Increment in mJ 

Relative mean estimation error for ~7 y 

Relative mean estimation error for my 

Relative mean estimation error for m y 

Detector quantum efficiency 

Unit step function 

. . . 
VIII 



VA 

‘TB 

uCRLB 

'TY 

'Ti, 

(+ YYo 

u YU, 

&Y  

fly' 

U- 
TY 

7 

70 

ctJc.1 

X 

0 

Eq. (C2) 

Eq. (Cll) 

Eq (B40) 

Eq. (14) 

Eq. (15) 

Eq. (37) 

Eq. (38) 

Eq. (60) 

Eq. (147a) 

Eq. (B4) 

Eq. (115) 

Eq. (A4) 

Eq. (B42) 

Eq. (65) 

Eq. (10) 

Standard deviation of A (t) 

Standard deviation of B(t) 

Cramer-Rao lower bound for (Tag 

Standard deviation of Y(t) 

Standard deviation of Y(t) 

Root-sum-square of u y and u y0 

Root-sum-square of u k and u p 
0 

Estimate for u y 

Time-advanced and time-delayed versions of u y(t) 

Root-mean-square estimation error for u y 

Half-width at half-maximum of an object in the 
sensor’s field of view [sl 

Transmittance of the optical train 

Normalized Gaussian density function 

Ratio of my to u yyo 

Convolution operator 

ix 





PASSIVE INFRARED SURVEILLANCE, 
PART II: THRESHOLD-CROSSING RECEIVERS 

INTRODUCTION 

The objective of an infrared surveillance receiver is to passively detect targets at long 
range while keeping false alarms acceptably infrequent. In this report we begin with a review of 
the surveillance-receiver analysis model developed in Part I [ll, which relates expected system 
performance to appropriate descriptions of the background scene, the electro-optic sensor, and 
the structure of the signal processor. We then apply the principles elucidated in Part I to the 
processor design problem. Some of the ideas underlying the approach and some of the main 
results are summarized below. 

The signal processor must examine the preamplifier output waveform and classify it either 
as targetlike or backgroundlike in structure, according to a set of criteria chosen by the system 
designer. Since the structure of the time variations in the video signal figures so importantly in 
how well the processor performs, we now discuss the mechanisms that give rise to these time 
variations. 

The video waveform at the output of the postdetector filter of a scanning background- 
limited (BLIP) photodetector displays fluctuations having two fundamentally different origins: 

0 Quantum noise. Time-of-arrival fluctuations of the individual photons incident on 
the detector cause random variations in the photosignal called quantum noise or photon noise. 

0 Background-structure-induced fluctuations. Scanning the sensor across spatial varia- 
tions in the scene radiance induces time variations in the photosignal referred to as 
background-structure-induced (BSI) fluctuations. 

Each of these two basic mechanisms enters into the statistical representation of the video signal 
in complementary, but distinctly different, ways. 

The background-structure-induced fluctuations enter into the statistical description of the 
video signal as a modulation imposed on the mean value of the video. Photon noise enters into 
the statistical representation of the video as the origin of the variance of the video about its 
mean. The statistical characterization is complete once the time-varying mean and variance of 
the video signal are specified, since the video is a nonstationary Gaussian random process.* 

Manuscript submitted September 14. 1979. 

*This fundamental description of the video-signal statistics has apparently not been previously applied to the passive- 
surveillance problem. Validity of the nonstationary Gaussian model for the video is assured wllenever the expected 
number of photons incident on the detector during a sensor dwell lime is much greater than unity [2]. 
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R. A. STEINBERG 

Each of the candidate processor designs we describe in this report consists of two parts: 
one part for estimating the mean video signal (as determined by the background structure), and 
a second part for estimating the noise variance due to quantum noise. A main result in this 
report is the proposal of a new signal-processor structure for generating high-confidence esti- 
mates of the time-varying rms quantum noise. Implementation of the proposed quantum-noise 
estimator requires a sensor with either true dc response or synthetic dc restoration. 

The second main component of the signal processor, the mean-video estimator, has a 
more critical impact on system performance than the quantum-noise estimator when operating 
against highly structured scenes. Unfortunately, the mean-video estimator is also more difficult 
to design, since the designer is required to make assumptions regarding the nature of the struc- 
tured background. 

We concentrate our discussion of mean-video estimators on three types of linear filters, 
evaluating their performance against a succession of increasingly complex model backgrounds: 

0 uniform scenes of known radiance, 

0 uniform scenes of unknown radiance, 

0 slowly varying nonuniform scenes, and 

0 scenes containing objects of arbitrary contrast and size.* 

Improved mean-video estimators can no doubt be developed by incorporating actual meas- 
ured background scenes into the processor-design-and-evaluation procedure and by expanding 
the scope of candidate processor designs to include nonlinear algorithms as well as linear ones 
[31. Although a representative database of distributions of measured background infrared radi- 
ance is thus required both for designing and assessing more advanced processor algorithms, we 
do not consider the availability of such data in this report. 

In addition to the limited scope of our model backgrounds and mean-video-estimation 
algorithms, a number of implicit assumptions underlie the approach to receiver design outlined 
above. Perhaps foremost of these is the basically deterministic nature of our model back- 
grounds. For example, the only requirement on each member of the class of “slowly varying” 
structured backgrounds is that the relative change in radiance from one sensor dwell time to the 
next be much smaller than unity. We make no attempt to give a statistical description, such as 
a probability density or correlation function, either to individual scenes or to the ensemble of 
scenes. 

The utility of the “unknown but nonrandom” infrared-background representation is ration- 
alized by paraphrasing Van Trees 14, p. 4561 (with the words in brackets modifying the original 
text) : 

“II is sometimes unrealistic lo consider the signal as a random waveform. 

For example, we may know that each time a [false alarm] occurs the [back- 

ground scene] will have certain distinctive features. If the [background] is 

‘This final category of model backgrounds subsumes the class of real backgrounds containing point objects (such as tar- 
gets) of eillier positive or negative contrast. 
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modeled as a sample function of a random process . . . we may average out the 

features that are important . . . Here it is more useful to model the [back- 

ground] as an unknown, but nonrandom, waveform.” 

The spatial correlation function (or its Fourier transform, the Wiener spectrum) is an 
example of a statistical scene description that illustrates this point. Typically, the presence or 
absence of a point target in a given scene has a dominant effect on system performance while 
having a negligible effect on the correlation function of a large, structured scene. 

Since we require a deterministic description for the background spatial variations, we, 
sometimes refer to our performance model and our performance assessments as background 
conditional. Another implicit assumption in our design procedure concerns the restricted 
nature of the target/background discriminant that we use. 

O f all the possible target/background discriminants, such as radiance variations with 
time*, space, polarization, and spectral content, we will consider only the spatial discriminant. 
Moreover we will make no attempt to exploit the spatial character of backgrounds. Any 
attempt to do so is complicated by the enormous diversity of structure displayed by natural 
scenes. Instead we will key on the known point character of the target. Each time we propose a 
candidate processing structure, we will ask the same question: Are there any nonpointlike struc- 
tural features that could induce a threshold crossing ? If so, the signal processor will be 
modified in a way intended to correct the apparent deficiency. Our ultimate objective is to con- 
struct a receiver that is sensitive only to the presence of pointlike objects in the sensor’s field of 
view. 

At present the limiting effect on system performance is generally background structure 
rather than detector sensitivity. Thus improvements in detector sensitivity are of little use, 
unless we can trade off sensitivity for improved performance against structured scenes. 

In the final part of this report we will examine the usual search-set rule of thumb relating 
electrical bandwidth and sensor dwell time. We will find that the use of large video 
bandwidths, in violation of the rule of thumb, enables us to sacrifice some degree of perfor- 
mance against uniform backgrounds in the interest of enhanced performance against nonuni- 
form backgrounds. Fortunately the performance degradation thus incurred against uniform 
scenes can be offset by means of focal-plane detector arrays (FPA) employing time-delay-and- 
integration (TDI) logic. Thus, we will establish a concrete link between advancements in com- 
ponent technology and overall system performance. 

BACKGROUND 

Concepts and Definitions 

The two conventional parameters for measuring how well the infrared search-and-track 
(IRST) sensor accomplishes its dual objectives of target detection and false-target rejection are 
the probability of target detection (PO) and the false-alarm rate (FAR). 

*For example, tracking algorithms are neither modeled nor discussed, even though they may play an important role in 
target/background discrimination as well as target tracking [S]. 
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The IRST performance model described below [ll requires as input complete descriptions 
of the IRST sensor and the scene radiance distribution (possibly including a target). As output 
the model generates the probability that the IRST device declares (rightly or wrongly) a target’s 
presence in the scene. A priori knowledge as to whether a target was in fact present in the 
specified scene allows interpretation of the target declaration probability (mJ) either as a target- 
detection probability (PO) or as a false-alarm probability (PFA). 

Photon fluctuation noise is the only stochastic aspect of the model; the background must 
be specified as a radiance map of arbitrary, but deterministic structure. Thus the performance 
predictions made with this model are background conditional. 

The IRST analysis model that follows applies to threshold-comparison receivers configured 
as in Fig. 1. The current X(t) at the output of the detector is input to an electrical filter of 
transfer function &r(f). The output current Y(t) of the electrical filter is compared with a 
threshold Y,(t). If Y(t) exceeds the threshold, the presence of a target is declared; otherwise 
no target declaration is made. 

DIRECTION OF 

ESTABLISH 
THRESHOLD 

Fig. 1 - A basic threshold-comparison receiver. The photodetector 
in this figure is idealized in that it is presumed to have a perfect all- 
pass electrical frequency characteristic; the frequency-dependent part 
of the detector responsitivity is lumped together with the transfer 
function of the postdetector filter to obtain H(f). A target declara- 
tion is made whenever the filtered current Y(t) exceeds the thres- 
hold level Y,(t). 

Figure 1 suggests that the threshold-establishing mechanism should suppress clutter- 
induced threshold crossings (false alarms) by increasing Ya(t) when Y(t) is clutterlike. Rather 
than allow Y,(t) to take on an a priori constant or functional value, it is necessary to establish 
the threshold by some means that adapts Y,,(t) to the prevailing background conditions. 

Proper operation of the processor requires that Y(t) < Y,,(t) when there is no target in 
the sensor’s field of view. A threshold-crossing event is defined as taking place at any time trC 
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such tha’t Y(tTC) = Yo(rrc). All threshold crossing detectors are presumed to be sensitive only 
to positive-slope crossings, for which* 

Y(f,) > Yo (IT(y). (1) 

Since the current Y(t) is a random process due to time-of-arrival fluctuations of the light 
quanta incident on the detector, 

0 threshold crossings are random events, 

0 the threshold-crossing times trc are random variables, and 

0 the number of threshold crossings <J that occur during a specified time interval is 
an integer random variable. 

We define the average value of Zas the mean crossing count mJ: 

mJ = E(J), (2) 

where the statistical expectation operator E(*] denotes an average value over the photon 
fluctuation statistics of the incident light [l]. 

We now introduce a threshold-crossing rate thJ to help explain the relationship between 
mJ and the conventional search-set performance measures PO and FAR [l], By definition 

mJ = 
5 

h,(t) df, (3) 
'0 

where I0 is an appropriately chosen time interval. 

It is generally found that the principal contributions to the crossing-count integral in Eq. 
(3) accrue in the neighborhood of a discrete set of times which in turn can each be associated 
with a structural feature in the scene. As the IRST sensor scans across a target (or a back- 
ground feature that simulates a target), the crossing rate h,(t) becomes a sharply peaked, 
pulselike waveform. 

We now define the time interval Zi as the entire period of time during which the sensor is 
scanned across a single structural feature in the scene (such as a local maximum in the radiance 
distribution). By presumption, Zi is a subinterval of the total scan interval I0 in Eq. (3). It can 
be shown that the increment in mJ associated with the interval I,, that is, 

hJ(&) = s h,(t) dt, (4) 
'i 

is generally a number between 0 and 1: 

0 < bI?ZJ(z,) < 1. (5) 

We show in Part I 111 that AmJ(Zi) may be interpreted as the probability of a threshold crossing 
sometime during the interval Zi, that is, as the probability of a target declaration during the time 
interval Z,. 

2 
z 
c: 

E 
u: 
vr 
* 
-r 
II 
IT 
c 

*By convention a dotted variable denotes the time derivative of the corresponding undotted variable. 
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If the structural feature scanned during the interval Zi is known a priori to be a target, we 
interpret the probability of target declaration as a probability of target detection: 

PO = hr?lJ(z,). (6) 

Conversely, if the IRST sensor is known u priori to be scanning a region in space that does not 
contain a target during I,, we interpret the quantity AmJ(Z,) as the probability of a false alarm 
during the interval I/: 

pan = AmJ(zi). (7) 

Dividing the total scan interval Ia into a succession of disjoint subintervals I,, each of which 
brackets an identifiable structural feature in the scene, we can write the overall false-alarm rate 
as the expected number of false alarms during I, divided by the duration of Za: . 

FAR = &J 7 Z’FA(Zi). (8a) 

Thus, from Eq. (7), 

FAR=L C AmJ(zi) 
TUJ i 

(false alarms per second), (8b) 

where T(Zo) is the duration of time interval ZO (seconds) and PFA(Zi) = L\mJ(Zi) is the probabil- 
ity of a false alarm during time interval Zi. 

In summary, target detections and false alarms are both manifested by the signal proces- 
sor as threshold crossings. Consequently we can express the search-set performance measures. 
PO and FAR in terms of a threshold-crossing-rate function h,(t). 

Following the next subsection we will formulate the crossing rate rizJ in terms of appropri- 
ate characterizations of the IRST sensor and the background scene under observation. We will 
develop the formulation for the threshold-crossing rate hJ in two steps Ill: 

0 First, we will express the quantities my(t) and u’y as functions of the scene radiance 
distribution and various optical and electrical attributes of the IRST device. We will define the 
quantities m,(t) and a;(t) as the ensemble mean value and variance of the filtered current 
Y(f) (Fig. 1). Analagous expressions for the mean and variance of Y(t), Ya(t), and Y,(t) are 

also required, and we will present them. All such mean values and variances, individually and 
collectively, are referred to as the current statistics of the IRST sensor. 

l We will express h,(t) in terms of the current statistics (as a function of my, u r, etc.). 

The expression for the threshold-crossing statistic thJ in terms of the statistics of Y(t) and 
Y,(t) is devoid of physical content: it applies equally well to any nonstationary Gaussian pro- 
cess. We will introduce all of the physical parameters - the optical and electrical characteristics 
of the IRST device and the radiance of the background scene - through the formulation for the 
current statistics. 

Current Statistics 

The primary current statistic of interest is the average value m,(t) of the detected photo- 
current X(t) (Fig. 1): 

m,(t) = E{X(t)). (9) 
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As in Appendix A, mx(t) can be written as a function of the scene radiance distribution and a 
number of important IRST sensor parameters. 

The detected current X(t) and filtered current Y(t) are related by the linear system- 
input/output relation 

Y(t) = s-1 h&--7) X(T) d7 = h(t)OX(t). (10) 

The symbol 0 is a shorthand notation for the convolution process defined by the integral 
expression in Eq. (10). Also, h(t) in Eq. (10) is the impulse response of the postdetector filter; 
that is, h (t) is the Fourier inverse of the filter characteristic H(f) in Fig. 1: 

H(f) = s-1 h(t) exp (-j2rfr) dt. (11) 

When the expected value is taken of both sides of Eq. (lo), it follows directly from Eq. 
(9) that 

my(f) E E( Y(t)) = h(t)Omx(t). (12) 

The following relationship can also be found directly from Eq. (10): 

rnjh) = &E(m) = iI,( (13) 

Expressions similar to Eq. (12) are also required for the quantities u g(t) and u:(t), 
where by definition 

~$4) E E([Y(t)--my(t)12~ (14) 

and 

a;(r) s  E([f(t)-mp (t)l*I. (15) 

An adaptation of Eq. (4.3.13) in Ref. 6 leads to 

u2,(t) = eh*(t)@m,(t), (16) 

where e is the electronic charge and h(t) and mx(t) are the same quantities as in Eq. (12). As 
in Appendix B of Part I 111, it follows from Eqs. (10) and (16) that 

u;(t) = e[h (t)l* @m,(t). (17) 

For the special case of spatially uniform scenes, the analysis of Appendix A shows that 
mx is time independent. It then follows from Eq. (12) that 

my= mx s -1 h(t) dt. (18) 

However, from Eq. (11) 

Thus, from Eqs. (18) and (19) 

H(0) = S-L h (1) dt. 

m y = H(O)mx 

(19) 

(20) 

c 
2:: 
c-2 

6 
CFI 
CR 

m- 

F 
G 
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for uniform backgrounds. For bandpass transfer functions, H(O) = 0. It follows from Eq. (20) 
that Y(t) is a zero-mean process for the special case of uniform backgrounds and bandpass 
postdetector filters. 

Similarly it can be shown from the Parseval relation for Fourier transforms 

l: h2(t) df = s-1 IH(f)(* df 
that Eqs. (16) and (17) simplify as follows in the uniform background limit: 

u’y = emx J-1 IH(fW df 
and 

a$= emX s -t (27rf)* IH(f U. 

(21) 

(22) 

Assuming that the transfer characteristic H(f) has been normalized to a peak value of 
unity, that is, 

m/ax H(f) = 1, (24) 

we define the conventional noise bandwidth of H(f) as 

Af = Jo- IH(f dY. (25) 

It follows from Eqs. (22) and (25) that 

u’y = 2emx Af, (26) 

which is the usual Poisson shot-noise variance formula (given in, for example, Ref. 7). By 
inference Eq. (16) is a generalization of the usual shot-noise variance expression to nonstation- 
ary shot-noise processes. 

The motivation for the results presented in this subsection is provided in the following 
subsection, in which we express the threshold-crossing rate &J(t) as a function of the current 
statistics. (It should be recalled from the Concepts and Definitions subsection that the usual 
search-set performance measures PO and FAR may then be calculated in terms of the crossing 
rate IjzJ.) 

In summary, the current statistics my, mp, u y, and u r may all be written as relatively 
simple functions of the postdetector filter impulse response h(t) and the average value mx(t) 
of the unfiltered current X(t) (Fig. 1): 

my(t) = h (t) @m,(t), (27) 

m?(t) = r;l&), (28) 

u;(t) = eh*(t) Omx(t>, (29) 

and 

u;(t) = e[h(t)l* Omx(t). (30) 

Expressions for the threshold-current statistics can be written directly by analogy to Eqs. (27) 
through (30) for the threshold approach depicted in Fig. 2: 

8 
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my,(t) = Kh,-,(t - TJ @m,(t), (31) 

mpo(t) = iz,,(t), (32) 

u$O(t) = eK ho2 (t - Td) Om,&), (33) 

and 

uio(t) = eK Iho (t - TJl* Omx(t), (34) 

where K and Td are the gain and time delay respectively in the threshold circuitry and h,-,(t) is 
the Fourier inverse of the threshold filter characteristic HO (f) (Fig. 2). 

Tyz-+~ Ho(f) t 49 *Yo(t) 

x(t) 
H(f) b Y(t) 

Fig. 2 - A simple adaptive-threshold scheme. The transfer function 
exp(-j2nf r,) introduces a delay of Td seconds, ensuring decorrelation of the ran- 
dom processes Y(t) and Y,(r). Figure 1 shows the significance of the random sig- 
nals X(r), Y(r), and Y,(t). 

The mean unfiltered current mx(t) that figures so prominently in Eqs. (27) through (34) 
is expressed in Appendix A as a function of the scene radiance distribution and a number of 
important IRST sensor parameters. 

Threshold-Crossing Rates 

We will now briefly outline the method developed in Part I 111 for calculating the average 
number of times mJ that the random current Y(t) crosses the random threshold Ye(t) during a 
specified time interval (Figs. 1 and 2). The relationship between the mean crossing count mJ 

and the usual search-set parameters PO and FAR was briefly discussed in the Concepts and 
Definitions subsection of this report and discussed in greater depth in Part I Ill. 

We first express the crossing count as the time integral of a threshold crossing rate rizJ(t) 

(Eq. 3). We th en Write the Crossing rate rizJ as a function of the current statistics as* 

r;tJ(t) = hJ,(t) exp[-u*(t)/2lt (35) 

where by definition 

r;lJ,(t) = (2m)-’ bi~o/uf’y& (36) 

*Equation (35) for t&, is not strictly valid in the neighborhood of “mean-crossing times” (to be defined by Eq. (42)). A 
more general formulation for 1;?1 valid everywhere is derived in Part I [ll. However, as we will note following Eq. 
(42), the more general expression for I;?r is not usually required, since it integrates to unity in the neighborhood of a 
mean crossing 11.21. 
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Also, 

and 

u’yy, = u’y + “‘y,, (37) 
2 

u LP, 
++Uf 

YO’ 
(38) 

24 (t) = (my, - my)/m YY . 
0 

(39) 

As indicated by Eqs. (41, (6)) and (8)) evaluation of the important search-set parameters 
PO and FAR requires the time integration of Eq. (35) to obtain the mean crossing count mJ 

over prescribed intervals of time: 

mJ = 
s ‘I h,(t) dt, (40) 

where Ii is the time interval of interest. 

When mx(t) is slowly varying compared to h (t>, it can be shown that hJ,(t) is practically 
constant with time (as will be expressed by. Eq. (48)). In this case, it follows from Eqs. (35) 
and (40) that 

mJ z rizJo 
s 

,, exp[--‘(c)/21 dt. (41) 

As we will now discuss, the integration in Eq. (41) is often quite simple to perform. 

Mean-Crossing Times and Times of Closest Approach 

Experience with the numerical evaluation of Eq. (41) has shown that the principal contri- 
butions to the integral accrue in the neighborhood of a discrete set of times. Moreover, it has 
been shown that these important discrete times are of two types: “mean-crossing times” and 
“closest-approach times” [1,21. 

As illustrated in Fig. 3a, the mean-crossing times t,, are those times that simultaneously 
satisfy the two conditions 

112~0~~) = my,(t,,) (42) 

and 

(43) 

For each solution of Eq. (42) that satisfies ‘constraint (431, that is, each time the mean current 
my(t) crosses the mean threshold my,(t) with positive slope, the expected number of crossings 
mJ is incremented by unity. Whenever mean crossings exist during the interval It, it is gen- 
erally not necessary to perform the integration in Eq. (40); in this case the expected number of 
threshold crossings mJ is well approximated by the number of mean-crossing times t,, during 
the interval It. Thus, the expression for hJ is generally not needed to evaluate the contribu- 
tions to mJ that occur in the neighborhood of mean crossings, since each mean crossing gives 

10 
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rise to a threshold crossing ill.’ Clearly it is desirable that no mean crossings 
when there is a point target in the scene; this may be taken as the first principle 
design for operation against structured backgrounds. 

occur except 
of search-set 

A 

E@:my 

I 
et 

t mc 

Fig. 3a - A “mean-crossing time” denoted fmr. A 
mean crossing occurs when the mean video signal 
my crosses the mean threshold signal my0 with 

positive slope. Asymptqtic evaluation of the 
crossing-rate integral, Eq. (401, shows that the pro- 
bability of a threshold crossing approaches unity in 
the neighborhood of a mean-crossing time t,,,, 111. 

If my(t) lies below my,(t) on the time interval It, that is, if there are no mean crossings 
during I,, the crossing-count integral, Eq. (401, is generally dominated by contributions accru- 
ing in the neighborhood of “times of closest approach.” As illustrated in Fig. 3b, closest- 
approach times are those times that satisfy the equation 

mpo(lca) = mjAt,,). (441 

t ca 

Fixed- Threshold Processors 

For fixed-threshold (FT) processors 

Fig. 3b - A “closest-approach time,” denoted r,,. 
The threshold-crossing rate 1;?1 typically increases 
many orders of magnitude in the immediate neigh- 
borhood of a closest-approach time. 

and 

mYO 
= Yo- 

(45a) 

(4%) 

*Although a threshold crossing is assured in the near neighborhood of a mean crossing, the threshold’-crossing time 
ITC is not equal to the mean-crossing time fmc, since ?TC is a random variable (as stated following Eq. (I)), while tmC 
is deterministic. 
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It follows from Eqs. (35) through (39) and (45) that 

hJ(f) = (hr)-’ bp/(Ty) exp[-u*(t)/21, (46) 

where 

u(t) = (y. - my)lu y. (47) 

The current statistics my, u y, and o 9 in Eqs. (46) and (47) are obtained from ‘Eqs. (27) 
through (301, and y. in Eq. (47) is a fixed threshold value. 

When mx(t) is slowly varying compared to h (t), it follows from Eqs. (23) and (26) that 

hJ, = (2~)-’ bjby) z [(Af)-’ s,” f*jH(f)1* djl”* = <Af>,,. 

Equations (41) and (481, taken together, provide a relatively simple formalism for calculating 
the expected crossing count of a fixed-threshold receiver operating against a slowly varying 
background scene. 

In the lim it of time-invariant mx (perfectly uniform backgrounds) Eq. (41) simplifies still 
further to 

mJ = (Af),, exp(--K*/2) * T(ZJ, (49) 
where T(Z,) is the duration of It, (Af),, is once again given by Eq. (48), and the fixed thres- 
hold y. has presumably been adjusted such that 

u - (yo- my)/uy= K. (50) 

Equation (49) is originally due to Rice 181 and has often been applied to the calculation of 
false-alarm rates for infrared search-set operation against uniform scenes 19,101. 

Initial Assessment of Adaptive Vs Fixed-Threshold Processors 

Some of the advantages and disadvantages of adaptive-threshold (AT) processing as com- 
pared with fixed threshold (FT) processing may be evaluated by comparing Eqs. (39) and (47), 
appropriate for AT and FT receivers respectively. 

It follows from Eq. (47) that an FT processor suffers a false alarm whenever the peak tar- 
get amplitude is less than the peak clutter amplitude. This situation is depicted in Fig. 4a. 
Thus target-to-clutter ratios less than unity cause the FT processor performance to be 
“background-structure lim ited” (BSL). In this case each false alarm can be associated with a 
structural feature in the background. The effect of quantum noise (as reflected in the magni- 
tude of u y, for example) is then totally overshadowed by background-structure effects. 

Inspection of Eq. (39) and Fig. 4b shows that an adaptive-threshold (AT) processor need 
not suffer background-induced mean crossings. If the filter Ho(f) (Fig. 2) can be chosen such 
that my,(t) tracks the background-induced variations in my(t), the background-induced mean 
crossings can be eliminated. Although false alarms may still occur as random events due to 
quantum noise, the probability is generally small that any given structural feature in the scene 
will cause a false alarm. 

12 
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m,(t) 
t 

c 
z 
c 

Fig. 4a - A critical shortcoming of fixed-threshold processing. The 
slowly varying maximum centered at tp has its origin in the nonuni- 
form background scene. The narrower peak at to is due to a target. 
The likelihood of a false alarm grows rapidly as the threshold level 
JO is reduced. There is no way for the constant-threshold processor 
to detect the target peak at to without also incurring a false alarm 
arising from the clutter peak centered at $. A plot of the 
threshold-crossing rate hJ(f) corresponding to this figure would 
show that the probability of a threshold crossing, and hence a false 
alarm, is far greater at time tp than.at any other time, since tP is a 
time of closest approach. 

Fig. 4b - An important advantage of adaptive threshold pro- 
cessing. The mean current my(t) is the same as for Fig. 4a. 
The adaptive threshold Ye(t) accurately tracks the slowly vary- 
ing background signal but not the more rapidly varying target 
signal. Thus, target detection is assured, and the probability of a 
false alarm is kept acceptably small. As contrasted with the 
situation of Fig. 4a, the probability of a false alarm is now no 
greater in the neighborhood of time tp than at any other time. 

I- 
*;. 
CF: 
‘4-i 
cm 
l-7” 
c-7 

mr 
r2 

An IRST sensor operating in this regime (such as in Fig. 4b) is said to be “quantum-noise 
limited” (QNL) in its performance. In this context QNL operation is clearly preferable to BSL 
(background-structure-limited) operation. 
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Uniform Scenes of Known Brightness 

The adaptive-threshold-performance advantage just described is realized only when the 
background scene is nonuniform. The performance of an adaptive-threshold processor is infe- 
rior to the performance of a properly designed FT processor when the background scene is uni- 
form and of known brightness. In this case the adaptive-threshold false-alarm rate (FARAT) is 
greater (worse) than the fixed-threshold false-alarm rate (FARrr): 

FARAT > FARrr. (51) 

For the false-alarm-rate comparison expressed by Eq. (51) to be meaningful, the adaptive- 
threshold gain K in Fig. 2 has been adjusted to achieve equal target-detection sensitivities for 
the two processors being compared. 

We now define uniform-background false-alarm-penalty (FAP) : 

FAP = ioi0g,, (FAR*~/FAR,,) dB. 

Uniform-Background False-Alarm-Penalty 

(52) 

The uniform-background false-alarm penalty is a measure of the performance disadvan- 
tage that accrues when an AT processor is used against a uniform-background scene of known 
brightness. As shown in Part I [l], the false-alarm penalty of the processor structure in Fig. 2 
may be written as 

FAP = 2.17 I 4 (y 
I 

where by definition 
II- my0 - my 

I 

2 

+ 5log,,[l - cr(1 - a)1 dB. (53) 
UY 

a = AfofAf (54) 
and where Af and Af, are defined as the noise-equivalent bandwidths of H(f) and Ho(f), 
respectively (Eq. (25) and Fig. 2). 

As an example, we assume that the threshold constant K in Fig. 2 is adjusted until “the 
threshold is five sigmas above the mean,” that is, 

my0 - my 

I I 
= 5, (55) 

QY 

when the search set is observing a uniform scene of known brightness. Furthermore we 
assume that the noise bandwidth of the target filter H(f) in Fig. 2 is twice as large as the noise 
bandwidth of the threshold filter H,(f): 

Afo 1 
a=-F=2’ 

(56) 

It follows from Eqs. (53) through (56) that the false-alarm penalty is 

FAP = 17.46 dB, (57) 
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corresponding to a value of FARAT (adaptive-threshold false-alarm rate) about 56 times worse 
than FARFT (fixed-threshold false-alarm rate). Clearly this is a severe degradation in perfor- 
mance. 

Time Delay and Integration 

Fortunately the disadvantage of AT processing can be more than recovered by means of 
time delay and integration (TDI). The effect of TDI is simply to multiply the mean current 
m,(t) by the number N of series TDI detectors. It follows from Eqs. (27) and (29) that TDI 
multiplies m Y and (T r by the factors N and N’/* respectively. It can be shown that 

for the AT processor depicted in Fig. 2, employing N series TDI detectors. It follows from Eqs. 
(551, (56), and (58) that 

FAPror = [(3 - 2N) (18.08) - 0.621 dB (59) 

for the example given. Thus the uniform-background false-alarm penalty suffered by the AT 
processor of Fig. 2 is more than compensated by the use of just N = 2 TDI detectors. 
Apparently the false-alarm rate can be made arbitrarily small by increasing the number of TDI 
detectors. Alternatively the false-alarm rate can be held constant with increasing N by making 
the threshold gain K (Fig. 2) inversely proportional to N ‘I2 The TDI performance advantage is . 
then realized as a target-detection sensitivity enormously increased over that of the N = 1 
single-detector IRST sensor. IRST performance against uniform scenes improves monotoni- 
cally as the number of TDI elements is increased. 

Again, the false-alarm penalty is meaningful only as a characterization of AT processor 
performance against the most benign type of background-a uniform background of known 
brightness.* However, the motivation for employing AT processing lies in the unfortunate real- 
ity that natural-background scenes are often highly structured. 

In following sections of this report we will characterize a number of candidate processing 
schemes with respect to their performance against a succession of more complex scenes. We 
discuss the rationale underlying the design of these candidate processors in the following sub- 
section. 

Ideal (CFAR) Adaptive-Threshold Receivers 

The candidate processor designs described in this report each consist of two parts: one 
part for estimating the mean video signal my, and a second part for estimating the rms quan- 
tum noise u y. The signal processor establishes the adaptive threshold Y,(t) as shown in Fig. 5: 

Y&t) = h?,(t) + K&y,(t), (60) 

*The relevance of scene radiance mL to search-set performance against uniform scenes follows directly from Eqs. (26) 
and (AS). The noise variance ~‘y increases linearly with scene radiance mL. Thus operation against bright uniform 
scenes occasions decreased target detection sensitivity and/or increased false-alarm rate as compared with operation 
against uniform scenes of lesser brightness. 
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NOISE ESTIMATOR 

Y,(t) 

Fig. 5 - Generic structure of the signal processors considered in this 
report. The expected value and rms value of the video signal Y(t) 
are denoted as m,(f) and u y(t) respectively. The signals rit,(t) and 
~?~(t) are estimates for my(t) and cry(t). The adaptive-threshold 
constant K is the gain of an ideal amplifier. As shown in Fig. 1, a 
target’s presence is declared (rightly or wrongly) whenever the video 
signal Y(r) exceeds the threshold signal Y,,(t). 

where 6 y and & y are estimates for my and u y respectively. The adaptive threshold constant K 
in Eq. (60) is a design parameter. The estimates Gy and ci y and the threshold Y0 are all sto- 
chastic processes. With the expected values of fiy and &‘r denoted as m. and m 

my 
er respec- 

tively, it follows from Eqs. (39) and (60) that 

u(t) = K(meJaYY,,) + hmy - myj/uyy,,. 

Equation (61) can be written as 

u(t) = KC1 + eey) + xehy, 

where the normalized mean estimation errors E - and E - my flY 
are defined as 

(61) 

(62) 

E- = Cm- - 
my- my mdlmy (63) 

and 

E- = Cm - my- &y u YYJ/U YYo’ (64) 

Also, as will be expressed by Eq. (C6), 

X S (my/uYYO) = 0(103), (65) 

and 

K = O(10). (66) 

When no target is in the sensor’s field of view, “ideal” receiver performance is expressed in 
terms of the estimation errors as 

IEriiyl << x-1 = 0(10-3) (67) 
and 

IQ,1 << K-’ = 0(10-l). (68) 

From Eqs. (621, (671, and (68) 

u(t) s K. (69) 
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Thus Eqs. (67) and (68) assure that u(t) is rendered time invariant by the AT processor when 
no target is in the sensor’s field of view. 

From Eqs. (41) and (691, 

mJ = FAR . T(Z1) = riJo exp(-K*/2) . T(Z,). (70) 

Equation (70) is identical to the crossing-count expression for uniform scenes, Eq. (49). 

The kind of processor just described is called a constant-false-alarm-rate (CFAR) proces- 
sor, since the threshold-crossing rate is now independent of time; that is, a crossing is no more 
likely to occur during scanning of a region of nonuniform background than during scanning of a 
region of uniform background. With reference to Fig. 4b for example, the crossing rate is now 
no greater at tp than at any other time. 

Unfortunately the CFAR processor is generally a nonrealizable ideal. Depending on the 
structural features present in the background radiance distribution, large estimation errors l Ay 
and E- ‘Ty may be unavoidable, giving rise to appreciable time dependence in Eq. (62) for u(t). 
We will show numerical examples that illustrate this point in Figs. 1 lb, 12, 14, and 15. 

When a target is in the sensor’s field of view, “ideal” receiver performance is obtained 
when the time interval Z, bracketing the target scan contains a mean-crossing time tmc, for 
which (Eqs. (42) and (39)) 

u(tmc) = 0. (71) 

As we discussed following Eq. (421, a mean crossing assures that 111 

PO = mJ z 1, (72) 

as desired. 

Mean-Video Estimators 

Comparison of Eqs. (67) and (68) shows that the requirement on l my for ideal receiver 
performance is two orders of magnitude more severe than the requirement on l B y. In this 
sense the mean-video estimator may be deemed a more critical component than the rms 
quantum-noise estimator. 

In the following sections we will concentrate our discussion of mean-video estimators on 
three types of linear filters (Table l), evaluating their performance against a succession of 
increasingly complex model backgrounds: 

0 uniform scenes of known radiance, 

0 uniform scenes of unknown radiance, 

0 slowly varying nonuniform scenes, and 

c 
2?. 
c 
l- 
35 
VI 
v: 
I..“- 
cy 
F 
c 

0 scenes containing objects of arbitrary contrast and size (such as a target). 
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Table 1 - Candidate mean-video estimators. All of 
the adaptive-threshold signal processors we consider in 
this report have the generic form indicated in Fig. 5, in- 
corporating a filter for estimating the expected value of 
the video signal Y(t). We consider the use of three 
types of linear filters as candidate mean-video estima- 
tors in order to illustrate our approach to processor 
design and evaluation, 

Greatly improved mean-video estimators can no doubt be developed by incorporating actual 
measured background scenes into the processor-design-and-evaluation procedure and by 
expanding the scope of candidate processor designs to include nonlinear algorithms as well as 
linear ones. 

Mean-Video Estimate i%,(t) 

0 

Y(t-- Tc) 

l/2 [Y(t- TdJ + Y (t + T,>l 

UNIFORM SCENES OF UNKNOWN BRIGHTNESS 

In. this section we will illustrate the potential advantage of adaptive-threshold (AT) pro- 
cessing over fixed-threshold (FT) processing by analyzing IRST performance against the sim- 
plest possible type of incompletely specified scene: the uniform scene of unknown brightness. 

We will first show that the unknown brightness level can badly degrade the performance 
of an FT system. We will then analyze the AT processor structure of Fig. 6 and show it can 
maintain the same false-alarm rate (FAR) against all uniform scenes regardless of brightness. 
In other words the Fig. 6 processor is said to operate in the constant-false-alarm-rate (CFAR) 
regime against the class of uniform backgrounds of unknown brightness. 

-j2TfTd 
e 

Fig. 6 - Candidate processor structure that achieves constant-false-alarm-rate 
(CFAR) performance against all spatially uniform scenes regardless of bright- 
ness. The transfer functions H(f) and H,(f) are related by Eq. (Bl). Realiza- 
tion of Ho(f) requires either true dc response or dc restoration. Comparing 
this figure with Fig. 5 shows that the mean video has been estimated as having 
a zero value. A unique feature of this processor is that the expected value of 
15~ is equal to the rms value of Y(t) (as shown in Appendix B). 
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Fixed-Threshold Processors 

We analyze the false-alarm-rate performance of an FT processor against a uniform scene 
by use of Eqs. (491, (SO), and (20) with the assumption that H(O) = 0, resulting in 

FAR = (Af),, erp[-f bJO/u#~* 

It follows from Eqs. (26) and (A5) that the current variance u: [A’] in Eq. (73) is directly pro- 
portional to the scene radiance rnL [W * crud2 * sr-ll: 

uf= CmL, (74a) 

where 

C Z (2e Af K,R,A&. (74b) 

We define the quantities K,, RI, and Adet in Appendix A. 

For illustration we assume that an acceptably low false-alarm rate is achieved by choosing 
the fixed threshold y. in Eq. (73) as follows: 

Yo = 8 uyc = 8 (CmLc)"2, (75) 

where mLc is the radiance of the scene chosen to initially calibrate the IRST and uYc is the 
corresponding value of u r obtained from Eq. (74). It follows from Eqs. (73) through (75) 
that the false-alarm rate is given by 

FAR =FAR, exp [32(mL - mLc)/mLl, (76) 

where FAR, is the calibration value of FAR: 

FAR c E (Af),, exp(--32). (77) 

It follows from Eq. (76) that a 20% increase in the scene radiance above the calibration 
value, 

mL = 1.2mLc, (78) 

causes a 200-fold degradation (increase) in the false-alarm rate. 

This simple example clearly demonstrates that large-scale uncertainties in the false-alarm- 
rate performance of fixed-threshold processors are induced by relatively small uncertainties in 
scene brightness. 

Adaptive-Threshold Processors 

In this subsection we analyze the false-alarm-rate (FAR) performance of the adaptive- 
threshold processors depicted in Figs. 2 and 6 against uniform scenes of unknown brightness. 

As discussed in Part I [ll, Eqs. (37) and (38) simplify as follows for uniform backgrounds 
for the Fig. 2 processing structure: 

19 



R. A. STEINBERG 

dY0 = uj(1 +(Y) (79) 

and 2 
upfo = - a; (1 + CY?, (80) 

where (Y is defined by Eq. (54) as the ratio of the noise bandwidths of H,-,(f) and H(f). From 
Eqs. (35), (36), (3% (48), (79), and (80) 

FAR = (Af),, [ myO~ymy II). 

If H(f) is a bandpass characteristic, so that H(0) = 0, it follows from Eq. (20) that 

my = H(O)m, = 0. 

We assume that Ho(f) is a low-pass characteristic, normalized analogous to Eq. (24): 

mfax Ho(f) = Ho(O) = 1. 

From Eq. (83) and by analogy to Eq. (20) 

my0 =KHo(0)mx =Kmx, 

where K is the threshold gain, as shown in Fig. 2. 

From Eqs. (82) and (84) 

From Eqs. (85), (26)) and (A5) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

It follows from Eq. (86) that the argument of the exponential in Eq. (81) is linearly propor- 
tional to the scene radiance mL. Thus the false-alarm-rate performance of the AT processor 
depicted in Fig. 2, like the FT processor analyzed in the previous subsection, strongly depends 
on the scene brightness. This is due to the incomplete cancellation of the mx factors in the 
numerator and denominator of Eq. (86) : my0 2 is proportional to mj, but u$ is proportional to 
mx. We remedy this situation in Fig. 6, by including a square-root device in the threshold cir- 
cuitry. 

Figure 6 shows that 

From Eqs. (60) and (87) 

Ye(t) = K&y(t). 

r%,(t) = 0 

for the Fig. 6 processor. It follows from Eqs. (61), (82), and (88) that 

(87) 

(88) 

u(t) = K(m~jury,). (89) 
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Importantly it is shown in Appendix B that ey as determined by the Fig. 6 processor is an 
unbiased estimate for u y: 

m. 
UY 

= uy. (90) 

From Eqs. (37) and (87) 

4Yo = u$[l + K2kr~Juy)21. 

From Eqs. (66), (90), (91), and (B6) 

(m,Ju yyo) - 1 = O(10m4) 

for the Fig. 6 processor. From Eqs. (89) and (92) 

u(t) = K. 

(91) 

(92) 

(93) 

From Eqs. (41) and (93) 

FAR = (Af),, exp (-K2/2) (94) 

for the structure shown in Fig. 6, where (Af),, is given by Eq. (48) and K is the adaptive- 
threshold gain (Fig. 6). Thus the false-alarm rate of the AT processor depicted in Fig. 6 is 
independent of the brightness level of the presumably spatially uniform scene. 

Our discussion has so far ignored a potentially important complication: Eq. (35) is derived 
in Part I Ill subject to the requirement that Y(t) and Y,(t) are both Gaussian random 
processes. However, although Y(t) and A(t) in Fig. 6 are each Gaussian, the square-root dev- 
ice ensures that Y,(t) is not Gaussian. Thus Eq. (35) is not strictly applicable to the structure 
of Fig. 6. 

However, the following plausibility argument suggests that a rigorous treatment of this 
problem is probably unnecessary. It follows from Fig. 6 and Eqs. (C2) and (C6) that 

u yo uB 1 uA -=-cm - 
I I mYo mB 2 m.4 

= 0(10-j). 

However, from Fig. 6 and Eq. (B3) 

mYO 
= KmGy = Kay. 

From the preceding two equations 

u y&T y = 0(10-3). (95) 

According to Eq. (95) the rms fluctuation of Ye(t) is three orders of magnitude smaller than 
the rms fluctuation of Y(t). Thus it appears unlikely that the statistics of ( Y - Yo) are appre- 
ciably influenced by the statistics of Y,. Consequently it also appears unlikely that a more 
rigorous treatment of this problem would yield a result significantly different than Eq. (35). 
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Another important point that we brushed over is the requirement for a low-pass threshold 
filter (Eq. (83)). Bandpass characteristics (ac coupling) eliminate some practical problems, such 
as l/f detector noise. However, the present analysis indicates that implementation of an 
effective AT processor for operation against uniform scenes of unknown brightness requires 
knowledge of the dc component of the photocurrent. We will find in succeeding sections of 
this report that dc coupling (or synthetic dc restoration [11,12]) is also required by IRST AT 
processors designed for operation against structured backgrounds. 

STRUCTURED SCENES 

We have employed two kinds of background models in the analysis thus far: uniform 
backgrounds of known brightness, and uniform backgrounds of unknown brightness. Moreover 
we have 0btained.a processor structure (Fig. 6) that performs extremely well against these types 
of backgrounds. In defining a hierarchy of increasingly realistic (and complex) background 
models, a reasonable next step is the consideration of slowly varying structured backgrounds.* 

We will first show that the Fig. 6 processor performs poorly against the newly defined 
class of slowly varying backgrounds. We will establish this point by showing that the Fig. 6 pro- 
cessor is susceptible to background-induced mean crossings against nonpointlike background 
structures. The prediction of mean crossings is relatively simple, requiring only the calculation 
of the my and my0 current statistics. Thus we will illustrate a general principle: point-target 
detectors that operate poorly are easily modeled. 

The deficiencies of the Fig. 6 processor suggest a modification in structure that will lead to 
ano$her processor (to be depicted in Fig. 10). Our analysis of the new processor will show that 
it can suppress mean crossings by slowly varying backgrounds. Nonetheless we will invoke the 
concept of constant-false-alarm-rate (CFAR) performance to show that considerable room for 
improvement still remains. We will propose yet another processor structure (to be depicted in 
Fig. 13) toward the objective of achieving CFAR performance against slowly varying back- 
grounds. The Fig. 13 processor employs a variant of “linear spatial filtering” to establish the 
threshold process Y. (t). 

Slowly Varying Scenes 

Toward defining what we mean by slowly varying scenes, we rewrite Eq. (27) in the form 

my(t) = J-: h(A) mx(t - A) dA. (96) 

An unresolved point radiator in the field of view (such as a target) induces fluctuations in 
mX (t) that are as rapid as those of the’ filter impulse response h (t).t However, we assume 

*The meaning of “slowly varying” in the present context will be expressed quantitatively in the next subsection. Quali- 
tatively it means that all objects in the field of view must be much larger than a single pixel in spatial extent. Whether 
or not a given scene is slowly varying thus depends on the instantaneous field of view of the sensor. 
tThis is assured by the usual design equation 2AfTd = 1, where T, is the dwell time of the sensor and Afis the noise 
bandwidth of H(f) [IO]. 

22 



NRL REPORT 8367 

here that the time variations in mx(t) are slow compared to h(t), that is, that mx (t) is not tar- 
getlike. This justifies writing a three-term Taylor expansion for mx (t - A),’ 

mx(t - A) s mx(t) - Ah,(t) + A2hix(t)/2. (97) 

Substituting Eq. (97) into Eq. (96) yields 

my(t) 2 mx(t) I, - rhx (t) I2 + tix(t)13/2, (98) 

where by definition 

I, = s-1 h(t) dt, (99) 

I2 = s-1 th (1) dr, (100) 

and 
13’ --m s O” t2 h (t) dt. (101) 

It follows from Eqs. (11) and (99) through (101) that 

I, = H(O), (102) 

12 = H’(O) G j27r)-1, (103) 
and 

I3 = -H”(O) (27~)-~, (1041 

where the primes indicate differentiation with respect to electrical frequency J If H(f) is a 
bandpass characteristic, then 

H(O) = 0. (105) 

It can also be shown that 

H’(O) = 0, (106) 

as a consequence of h(t) being a real function of time. From Eqs. (98) through (106) 

my (t) z -(87r2)-’ H”(0) iix (t). (107) 

According to Eq. (107) the bandpass filter H(f) double-differentiates a slowly varying input. 
The corresponding approximation to Eq. (29) for u ‘y is easily shown to be 

u$(t) s 2eAf mx(t). (108) 
As shown by Eq. (B3), 

mhy((t) = cry(t). (109) 

Thus from Eqs. (108) and (109) and Fig. 6 

my0 (t) G  Krney (t) g K (2e Af) ‘I2 rnj12 (t). (110) 

*It is sinlple to include one or more higher order term in Eq. (97); however, the three-tern> expansion is sufficient to 
illustrate the point that slowly varying m,(r) can defeat the processor of Fig. 6 by inducing mean crossings. 
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In the remainder of this section 

We will assume that the transfer function H(f) has a simple bandpass characteristic (to 
be given by Eq. (111)). 

We will assign the mean current mx(t) a waveshape many dwell times in duration, 
representative of an extended nontargetlike object in the sensor’s field of view. 

We will evaluate Eqs. (107) and (110) for the mean filtered current my(t) and mean 
threshold my0 (t) respectively and will show that mean crossings occur (Eq. 42, Fig. 3a, 
and the accompanying discussion). Each such mean crossing is correctly interpreted as a 
false target report, that is, as a “false alarm.” 

We will conclude that the Fig. 6 processor is not effective for suppressing false alarms 
from nonpointlike structural features in the background. The only current statistics 
required to make this assessment are my(t) and my0 (t); there is no need to calculate the 
other current statistics (u y, u 9, u ro, u r,) or the threshold-crossing statistic tiJ. Thus the 
processor is operating in a basically nonstatistical regime: quantum-noise effects (as 
reflected in the magnitude of u y for example) are totally overshadowed by background- 
structure effects. This operating regime, designated as the “background-structure-limited” 
(BSL) regime, has the characteristic that each false alarm that occurs can be associated 
with a structural feature in the background. 

Model Filters and Backgrounds 

We choose a form of “raised cosine” for the mode!-filter characteristic H(f) (Fig. 7): 

IHW I = sin2(7rfl/2f), 0 < f < fl9 (llla) 

= 1, fl < f < f29 (lllb) 

= cos2bdf - f2)/2(f3 - fJ1, f2 6 f G  f39 (lllc) 

= 0, f3 G f. (llld) 

1 H(f) 1 
A Fig. 7 - Modified raised-cosine model for the filter 

characteristic H(f). Our illustrative, numerical exam- 
ples in this report all assume that IH( has the form 
depicted here. Analytic expressions for 1 H cf) 1 and Af 
appear as Eqs. (111) and (114). The analytic expres- 
sion for (Af),, (Eq. (48)) is more complicated than 
Eq. (114) for Af. However, the numerical value of 

f (Af), is usually not much different than the value of 

fl f2 f3 Af. 
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It can be shown from Eqs. (111) that 

H(O) = H’(O) = 0 (112) 

and 

H”(0) = 7?/2.f:. (113) 

It follows from Eqs. (25) and (111) that the noise bandwidth of the model filter is 

Af = (5f2 + 3f3 - Sfl)/S. (114) 
An analytical expression has been obtained for the rms bandwidth defined by Eq. (48) but is 
not given here. 

Our model background, transformed from radiance to current by Eq. (A6), gives rise to a 
mean detected signal of the following parametric form: 

mx(t) = x&l + xt[l + (t/7)*1-‘]. (115) 

The parameters x0, 7, and x1 correspond respectively to a constant background level, the 
halfwidth at half maximum of an “object” in the scene, and the object/background peak 
contrast. Depending on whether r is large or small compared to the system dwell time (and the 
duration of h (t)), Eq. (115) for mx(t) is representative of a “clutterlike” or a “targetlike” object 
respectively. A representative plot of Eq. (115) is given in Fig. 8. For the present purposes we 
assume r is much longer than a dwell time, so that m,(t) is definitely not targetlike, 

A (m, /x0) 

,-- - -- 

I I 1 ,t -T T 

From Eqs. (1071, (1131, and (115) 

Fig. 8 - Model nonuniform background scene, 
transformed from radiance to average current by Eq. 
(~6). Our illustrative numerical examples in this 
report all assume that mx(t) has the form depicted 
here. An analytic expression for mx(t) appears as Eq. 
(I 15). The parameters x0, T, and xl correspond 
respectively to a constant background level, the 
halfwidth at half maximum of an “object” in the scene, 
and the object/background peak contrast. Negative- 
contrast objects are modeled by choosing xt < 0. 
Depending on whether r is large or small compared to 
the system dwell time, our model m,(t) is representa- 
tive of a “clutterlike” or a “targetlike” object respec- 
tively. 

where 

my(r) z my(O) [l - 3(f/r)*l [l + (f/r)2l-3, 

my(O) = xoxJ8Cfl 7)*. 
From Eqs. (108) and (115) 

ay(t) s (2eAfxo)"* (1 + xl11 + (t/r)*]-‘)“*, 

with Af being given by Eq. (114). 

(116) 

(117) 

(118) 

c 
z 
6 cr: 
u? C 
Pp h 
IT 
c 
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Figure 6 Processor 

We see that for the Fig. 6 processor 

Y&) = K &y,(t - Td). (119) 
Taking the expected value of Eq. (119) and using Eq. (B3), we obtain 

mYo(t) = K uy(f - TJ, (120) 

where u r is given by Eq. (118) for the model filter and model background of the previous sub- 
section. 

Equations (116) and (120) are plotted in Fig. 9 with the illustrative parameter values 

x0 = 1O-9 A, (121a) 

x1 = 1, (121b) 

r = 12.5 Td s, (121c) 

Af = 5000 Hz, (122a) 

f, = 2000 Hz, (122b) 

(Af),m, = 4034 Hz, (122c) 

and 

K = 9. (123) 

IO-” A) 

Fig. 9 - Illustrative calculations of the mean video my 
and the mean threshold my0 for the processor dep- 

icted in Fig. 6. Model background and filter parame- 
ters are as specified by Eqs. (121) through (124). It is 
assumed that the sensor is scanning an object 12.5 tar- 
get widths in extent, which is an object far too large to 
be a target. This figure shows that the Fig. 6 proces- 
sor experiences a mean crossing against the nontarget- 
like object, giving rise to a false alarm. Thus, the Fig. 
6 processor is ineffective against spatially structured 
scenes. 

From Eqs. (118), (1211, and (122) the nominal rms sensor noise is 

u ,A-) = (2e Afxo) “* = 1.27 x 10-t* A. 

We calculate the peak contrast in our model background from Eqs. (115) and (121) as 

[mx(0) - rnx(=)l =x0x1= 1 x lop9 A. 

Thus the peak contrast in the background is 
m,(O) - n7xC-J 

u y(w) 
= 790 
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times larger than nominal noise-equivalent irradiance (NEI) of the sensor, for the parameter 
values we have chosen (Eqs. (121) and (122)). We assume the system dwell time is related to 
the noise bandwidth Af by the usual search-set rule of thumb [lo] 

T, = (2Af)-* = 1O-4 s. (124) 

According to Eqs. (121) and (124) the full width 27 of the object represented by Eq. 
(115) is 25 dwell times in duration, and the signal from an unresolved target is about 2 dwell 
times in duration. Thus the size of the object represented by Eq. (115) is 12.5 target widths. 

As may be seen directly from Fig. 9, the extended object represented by Eqs. (115), 
(121), and (124) does give rise to a mean crossing. Furthermore, as we discussed following Eq. 
(42), a mean crossing assures that a threshold crossing will occur. However, because the object 
under observation is about 12.5 target widths in extent, this threshold crossing must be inter- 
preted as a false alarm. 

In the next subsection we show that simple modifications to the structure of Fig. 6 result 
in a processor design that reliably discriminates between point objects and slowly varying 
extended objects, at the expense of some performance against uniform backgrounds. 

Improved Processors 

Inspection of Fig. 9 shows that the mean threshold my,(t) derived by the Fig. 6 processor 
does not increase quickly enough or strongly enough to prevent a mean crossing. Prevention of 
this mean crossing requires that the mean threshold my,(t) advance in synchrony with the 
mean current my(t). 

An AT receiver structure with a more responsive threshold mechanism is shown in Fig. 
10. Instead of Eq. (120), one now obtains 

my,(t) = rn,(t - Td) + KayCr - TJ. 

We set the delay time Td in Eq. (125) and Fig. 10 equal to the 
presume that Eqs. (116) through (118) for my and u y are still valid. 

(125) 

sensor’s dwell time. We 

- e- j27ffd 

X(t)- 

Y,(t) 

CT.:: 
z? 
r: 
I”- 
>* 
cn 
<Jo 
P-” 
“71 
c- 
IT 
c- I‘ 

Fig. 10 - Candidate processor with a nonzero mean-video estimator. Comparison with Fig. 5 shows 
that the mean-video estimate is simply a time-delayed version of the video signal: i%,(t) = Y(t - r,). 
The rms noise estimate is the same as for the Fig. 6 processor, enabling this structure to achieve CFAR 
performance against all uniform scenes regardless of radiance. The time-delay element in the threshold 
circuit is required to prevent self-thresholding by a target waveform. 
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The performance of the Fig. 10 processor is most easily assessed by means of a numerical 
example. Once again we employ Eqs. (111) and (115) as parametric models for 
H(f) and mx(t) respectively with parameter values specified by Eqs. (121) through (124). The 
corresponding values of my and m Y. are plotted as functions of time in Fig. lla. 

(10-l’ A) 
Fig. Ila - Illustrative calculations of the mean 
video my and the mean threshold my0 for the 

Fig. IO processor. Model background and filter 
parameters are the same as for Fig. 9. The sen- 
sor is again assumed to scan an object N = 12.5 
target widths in extent. Comparison with Fig. 9 
shows that a considerable performance improve- 
ment has been achieved, since the mean crossing 
present in Fig. 9 has now been eliminated. 

Comparison of Fig. lla with Fig. 9 shows that a considerable performance improvement 
has been gained: the background-induced mean crossing (the certain false alarm) present in 
Fig. 9 has been eliminated. Figure Ila shows that the mean threshold mYo(t) appears to accu- 
rately track the mean current m,(t). 

However, a performance assessment based solely on visual inspection of Fig. lla is 
incomplete and misleading. Once background-induced mean crossings are indicated (as in Fig. 
9), the analysis need go no further : the performance of a grossly inadequate processor may be 
assessed quite simply, without need to evaluate either u yYO or tiJ. However, the absence of 
mean crossings (as in Fig. lla) is not necessarily indicative of adequate performance. We show 
this by calculating a 300-fold increase in the expected number of threshold crossings over the 
time interval [t/71 < 2 due to the presence of the nontargetlike object. 

From Eqs. (41), (481, and (39) 

mJ = (Af),,,, s, eXph*(t)/21 dt (126) 

for slowly varying scenes, where 

u(t) = [myo(f> - my(t)l/u yyo(t). (127) 

From Eq. (37) 

u2yy,(r) = &t) + u2yo(t). (128) 

The quantities my(t), cry(t), and m,(t) are calculated from Eqs. (1161, (1181, and (125) 
respectively for the Fig. 10 processor. Evaluation of mJ(t) by means of Eqs. (126) through 
(128) can now be performed, once it is shown how u Y. is calculated. 

From Eq. (60) and Fig. 10 

Ye(t) = h,(t) + K c?-,(t), (129) 
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where 

h,(t) = Y(t - Td). 

From Eq. (130) 

u,;~(T) = u & - TcJ. 

From Eqs. (131) and (B3) 

aA, = rney(l - TJ. 

From Eqs. (132) and (B6) 

ucy(t)/uliiy(r) = uby(t)lmey(t - Td) = O(10w3). 

From Eqs. (129), (133), and (131) 

(130) 

(131) 

(132) 

(133) 

u yo(t) = (~,~~(l) = u & - TJ. 

Finally from Eqs. (128) and (134) 

&,(t) = c+(t) + u;(t - Td), 

where (+ r(t) and u r(t - Td) are calculated from Eq. (118). 

(134) 

(135) 

The quantity u(t) given by Eq. (127) corresponding to Fig. lla is plotted as Fig. llb. If 
there is no object in the field of view, so that X, = 0 in Eq. (115)) the expected number of 
false alarms during the time interval (t/71 < 2 is given by 

mJ = (Af) rms 47 - exp(-K*/4) = 3.2 x 10d8, (13:) 

where the appropriate values for 7, (Af),,,,, and K are obtained from Eqs. (121), (122), and 
(123) respectively. However, integrating Eq. (126) numerically with u(t) as given by Fig. lib, 
we find that 

mJ = 1 x lo-‘. (137) 

Fig. llb - Illustrative calculations of 
u(t) z (my0 - m,)/u rYo for the same parame- 
ter values as used for Fig. lla. The threshold- 
crossing rate increases about four orders of mag- 
nitude in the neighborhood of the closest- 
approach time rCO. The false-alarm probability 
during a time interval [C/T 1 < 2, as calculated 
from Eq. (126), shows a 300-fold increase due to 
the presence of the nontargetlike object. Thus 
the time variation in u(t) reflects less-than-ideal 
performance. 

Comparison of Eqs. (137) and (136) shows that the probability of a false alarm has 
increased more than 300-fold. This is a significant deficiency in performance, since the full 
width of the object in the field of view is 12.5 times larger than a target. 
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We examine the variation in processor performance with object size by defining the 
parameter N as 

N = (T/T(/). (138) 

Thus N is the ratio of object size to target size. In our preceding example we assumed a value 
N = 12.5 (Eq. (121~)). Plots of u(t) for object sizes N = 9 and N = 6.5 are shown in Fig. 12. 
All parameter values other than 7 are as specified by Eqs. (121) through (124). 

Fig. 12 - Plot which together with Fig. llb 
shows the effect of object size on the perfor- 
mance of the Fig. 10 processor. All parameter 
values except for object size N are the same as in 
Fig. llb. An object with size N = 9 target 
widths causes a six-order-of-magnitude increase 
in the nominal false-alarm probability during the 
time interval If/r1 < 2. As we discussed in the 
text, this is established by evaluating Eq. (126) 
for mJ with u(t) as given by the solid (N = 9) 

’ 
curve in this figure. According to Eq. (139) a 6% 

*(-$I false-alarm probability is calculated for the 9- 
target-width object. The zero intercept for 
N=6.5 indicates a mean crossing. Hence the Fig. 
10 processor suffers a certain false alarm against 
an object 6.5 target widths in extent. 

The N = 9 curve in Fig. 12 shows even more dramatically than for N = 12.5 that the 
absence of mean crossings is not indicative of adequate performance. The threshold-crossing 
rate, as calculated from Eq. (1261, briefly increases by seven orders of magnitude as the sensor 
is scanned across the nontargetlike object 9 times larger than a target. The probability of a 
quantum-noise-induced threshold crossing, originally small, grows to significant amplitude in 
the neighborhood of the time at which the difference between my0 and my assumes its 
minimum value (the “time of closest approach”). 

Integrating Eq. (126) numerically with u (t) as given by the N = 9 curve in Fig. 12, we 
find 

mJ = 0.06, N = 9, (139) 
corresponding to a 6% probability of false alarm. If there were no object in the field of view, so 
that x1 = 0 in Eq. (1151, the expected number of false alarms during the time interval 
1 t/71 < 2 is obtained from Eq. (136) as 

mJ = (9/12.5) X 3.2 X lo-’ = 2.3 x lo-*. (140) 

The factor 9D2.5 in Eq. (140) is due to the linear dependence of mJ on T (Eq. (13611, and the 
linear variation of r with N (Eq. (138)). Comparison of Eqs. (139) and (140) shows that the 
extended object, 9 target widths wide, has caused a six-order-of-magnitude increase in the false 
alarm probability. 

The dashed curve in Fig. 12 shows that the Fig. 10 processor suffers a mean crossing (and 
hence a certain false alarm) for N = 6.5, that is, for objects 6.5 times larger than a target. 
Clearly there is still considerable room for improvement in processor performance. 
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Improved performance is obtained with the processor structure depicted in Fig. 13. The 
transfer function Ho(f) in Fig. 13 is related to H(f) as follows (Eq. (Bl)): 

Ho(f) = (2Af)-’ H(f) 0 H(f), (141) 

corresponding to an impulse response 

h,(r) = (2Af)-’ h*(f), (142) 
where 11(t) and h,(t) are the Fourier transforms of H(f) and Ho(f) respectively. 

1 
H(f) -Y(t) 

Fig. 13 - Candidate adaptive-threshold signal-processing structure. The 
estimated value of the mean video rity is obtained as the average of time- 
delayed and time-advanced versions of the video, as we will give as Eq. 
(143). Since the quantity &(t) - Y(f) is proportional to the discrete-time 
second derivative of Y(t), -this processor is a Laplacian linear spatial filter, 
modified to incorporate the “efficient shot noise estimator” developed in 
Appendix B. 

From inspection of Fig. 13 and Eq. (142) the mean and variance estimates are obtained as 

rizy(t) = [Y(t - T(J + Y(t + T,)1/2 (143) 

and 

c?;(t) = e/?*(t) 0 [X(t - T& + X(t + T,)1/2. (144) 
It can be shown from Eqs. (143) and (144) that 

my,(t) = +Crn, + mu'> + K +g+ + c+-> 
and 

a2yyo(t) = a$(t) + +- + CT:+), 

t/2 

(145) 

(146) 

CI 
zz 
r: 
E 
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c; 
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where 

UY ** E &t f T(j) (142a) 

and 

my *zmy(t f Td). (147b) 

Again we examine the performance of our latest candidate processor structure by consid- 
ering some numerical examples. If the model filter and model background are again assumed 
to be given by Eqs. (111) and (115) respectively, my(t) and c y(t) are still given by Eqs. (116) 
and (118). Equations (126), (1271, and (128) for mJ, u(t), and arro(t) are also still applica- 
ble. However, Eqs. (145) and (146) now replace Eqs. (125) and (135) respectively. 

The first set of numerical calculations for the Fig. 13 processor is shown in Fig. 14, where 
all parameter values except for T are as specified by Eqs. (121) through (124). Values of r for 
Fig. 14 are given by 

r = NT,, N = 5, 6.5, 9, (148) 

where Td = 10P4 s, as given by Eq. (124). When mJ is calculated by means of Eq. (1261, the 
result for the expected number of false alarms during the interval (f/r1 < 2 is 

corresponding to the solid curve 

uJ2 
N=5 

mJ = 9.4 x lo-‘, N = 9, (149) 

(N = 9) in Fig. 14. 

I ’ 
I 1 

-c$ 

I I 

Fig. 14 - Performance assessment of the Fig. 13 
processor against objects of various sizes. All 
parameters except for object size are the same as 
for Figs. 11 and 12. The processor experiences 
no difficulty in suppressing false alarms for N = 
9 (against the 9-target-width object), retains mar- 
ginal capability for N=6.5, and experiences a cer- 
tain false alarm for N-S. 

Comparison of Eqs. (149) and (139) shows that the false-alarm probability of the Fig. 13 
processor is about five orders of magnitude smaller than the false-alarm probability of the Fig. 
10 processor. This is an important improvement in performance. Further comparison, of Figs. 
12 and 14, shows that the Fig. 10 processor suffers a certain false alarm (a mean crossing) for 
N = 6.5, but the Fig. 13 processor does not. However, inspection of Fig. 14 shows that the 
Fig. 13 processor suffers a certain false alarm for N = 5 (for an object 5 times wider than a tar- 
get). Again the latest processor (Fig. 13) has considerable room for improvement as a detector 
of unresolved targets. 
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Noise Bandwidth and Dwell Time 

c 
z  r- 

In this subsection we will show that system performance against nonuniform scenes can 
be improved at the expense of degraded performance against uniform scenes. We presume that 
the signal processor is structured as in Fig. 13. 

The key to improving this processor’s performance against extended (nontargetlike) 
objects is to modify the conventional search-set rule of thumb relating noise bandwidth and 
dwell time 1101 as given by Eq. (124): 

Af = (2T,)-? (150) 

We now consider the effect on system performance of choosing a value for Af four times larger 
than specified by Eq. (150): 

Af = M(2T,)-‘, M = 4. (149) 

We refer to the processor described by Eq. (150) and Fig. 13 as an “M= 1 processor’ or “nar- 
rowband processor, ’ and we refer to the processor described by Eq. (151) and Fig. 13 as an 
“M= 4 processor” or “wide-band processor.” We evaluate the relative performance of the two 
processors by extending the numerical example of the previous subsection. 

We calculate Fig. 15 by means of the same equations as Fig. 14, except that we employ 
the following parameter values (descriptive of the it4=4 processor) instead of Eqs. (121) 
through (124): 

x0 = 1O-9 A, (152a) 

X’ = 1, (1<2b) 

r = NT,, N = 2.5, 5, (152~) 

Af = 20 kHz, (153a) 

f, = 8 kHz, (153b) 

(Af) rms = 16.136 kHz, (153c) 

and 

K = 9. (154) 

From Eqs. (151) and (153) 

Td = 1O-4 s; (155) 

that is, the sensor dwell time is the same as for the previous example (Eq. (124)). 

Comparison of Figs. 14 and 15 shows that the M= 1 processor suffers a certain false alarm 
while the performance of the M=4 processor is barely perturbed for an object 5 target widths in 
size (N= 5). Further inspection of Fig. 15 shows that the M= 4 processor retains some capabil- 
ity even against extended objects just 2.5 target widths in size.* Increasing the noise bandwidth 
still further, by choosing A4 > 4 in Eq. (151), results in even greater selectivity against 
extended targets. 
*We cannot evaluate sensor performance using the approximate Eqs. (I 16) and (I 18) for smaller values of N due to 
our slowly-varying-background approximation, Eq. (98). This limitation is due to our desire to maintain computational 
simplicity in our numerical examples and is not fundamental to the theory. 
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Fig. 15 - Performance assessment of the Fig. 13 
processor employing a wide-bandwidth elec- 
trical filter. The noise bandwidth for this figure is 
4 times larger than for Fig. 14. Processor perfor- 
mance is barely perturbed by the presence of the 
same 5-target-width object (N=5) that would 
cause the narrow-bandwidth (M=l) processor to 
experience a false alarm (Fig. 14). The wide- 
bandwidth CM=41 processor retains marginal ca- 
pability against an N=2.5 target-width object. 
The improvement in performance against nonuni- 
form scenes for the M=4 processor compared to 
the M=l processor is gained at the expense of 
degraded performance against uniform scenes. 

We now show that the improvement in performance against nonuniform scenes for values 
M > 1 is gained at the expense of degraded performance against uniform scenes. 

With the assumption that H(f) in Fig. 13 is a bandpass characteristic, it follows from Eqs. 
(82) and (147) that for uniform backgrounds 

and 
my f=m--0 Y- 9 (156a) 

Thus, from Eqs. (145) and (156) 

+- '+Y - CT; = uy. (156b) 

mycl = Kay (157) 

against unstructured scenes (for which xl = 0 in Eq. (115)). Also, from Eqs. (118) and (115) 
(with x, = O), we find 

u y = (2ex,,Af) I’*. (158) 

Thus, from Eqs. (157), (1581, and (151) 

my0 a K(Af)‘/* = K iki’/*. (159) 

According to Eq. (159) the threshold value my0 for the M=4 processor is twice as large as the 
mean threshold for the M= 1 processor. Consequently the peak target signal strength must be 
twice as great to induce a mean crossing (a certain target detection) in the &I=4 processor than 
in the M= 1 processor.* 

*The structure of tlie Fig. 13 processor ensures that a target signal does not experience significant self-thresholding. 
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Alternatively it follows from Eq. (159) that we can compensate for a 4-fold increase in Af 
by halving the threshold gain K. Instead of Eq. (1541, the equations 

K = 912, A4 = 4, (160) 
= 9, A4 = 4, 

assure that the M= 4 and M= 1 processors have equal values of m y0 and hence equal values of 
target signal strength required to induce a certain target detection. 

From Eqs. (8), (126), (1271, (1281, (145), (146), and (I561 

FAR CC exp(-K*/4) (161) 

for the Fig. 13 processor, for operation against uniform scenes. It follows from Eqs. (160) and 
(161) that the reduced value of threshold gain required to equalize target-detection probabilities 
results in a greatly degraded uniform-background false-alarm rate for the M=4 processor as 
compared with the M= 1 processor. 

Analogous to our discussion following Eq. (52) the performance disadvantage described 
can be interpreted as a uniform-background false-alarm-penalty (FAP) that accrues to the use 
of wide-bandwidth processors (M > 1). For the Fig. 13 processor we can show that 

FAP(M) = 1.086 K*(l - M-‘I dB. (162) 

For the previous numerical example (K = 9, M = 4) we find 

FAP = 66 dB. 

Table 2 summarizes the results of our numerical examples. 

The Promise of Focal-Plane-Array Technology 

The performance disadvantage incurred by quadrupling Af (as we pointed out following 
Eq. (161)) can be completely offset by replacing each detector element with four series TDI 
detectors (as determined by equations similar to Eqs. (58) and (59) in the subsection “Time 
Delay and Integration”). Thus, improvements in focal-plane-array (FPA) technology I151 lead- 
ing to large numbers of TDI elements may afford us “excess” uniform-background sensitivity 
that we can intentionally sacrifice in the interest of better performance against structured back- 
grounds. 
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Table 2 - Summary of performance calculations of candidate 
processors. In performing example calculations, we assume that the 
filter characteristic and background variation have the parametric forms 
indicated in Eqs. (111) and (115) respectively. All calculations assume 
numerical values for the parameters x0, x1, K, and Td given by Eqs. 
(1211, (1231, and (124). Calculations for narrow-bandwidth electrical 
filters, Eqs. (1221, correspond to the bandwidth parameter it4 = 1, and 
calculations for wide bandwidth filters correspond to Eqs. (153) and M 
= 4. The parameter N is the ratio of object size to target size. Object 
contrast relative to sensor noise-equivalent irradiance (NE11 is equal to 
790 for the M= 1 calculations, and 395 for the M=4 calculations. The 
minimum target signal strength required to assure target detection is 9 
times the sensor NE1 for all calculations. The last entry in the table 
(N = 2.5, A4 = 4) indicates that a clutter object 2.5 target widths in 
extent and of amplitude 395/9 = 44 times greater than the minimum 
target contrast required for assured detection gives rise to a 12% proba- 
bility of false alarm. 

Fig. 6 

Fig. 10 

Fig. 13 

Fig. 13 

Object Size Bandwidth 
N M 

12.5 

12.5 
9. 
6.5 

9. 
6.5 
5. 

5 
2.5 

T False-Alarm Probability, It/71 < 2 

Nominal Degraded 

1 5.2 x 10-t’ 

1 3.2 x 10 -8 
1 2.3 x 1O-8 
1 1.7 X 1o-8 

1 2.3 x 1O-8 
1 1.7 x 10-s 
1 1.3 X 1o-8 

4 5.2 x 1O-8 
4 2.6 x 1O-8 

1 

1 X 1o-5 
6 x lo-* 
1 

9.4 x lo-’ 
3.5x lo-* 
1 

8.2 x 1O-8 
1.2x lo-’ 

i -I 
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Appendix A 
CALCULATING THE AVERAGE CURRENT FROM BACKGROUND DATA 

Our objective in this appendix is to derive Eq. (A5), which expresses the average value of 
the random current X(t) (Fig. 1) 

m*(t) - E(X(t)] (Al) 

as a function of the scene radiance mL and a number of important sensor parameters. We will 
derive Eq. (AS) subject to the assumptions that the scene is spatially uniform (that the radiance 
mL is independent of view angle) and that the average current mx is constant with time. We 
will then generalize Eq. (A51 to Eq. (A6) to allow for the possibility of spatially nonuniform 
background radiances and time-variable average currents mx(t). 

The average value of the photocurrent X(t) (Fig. 1) may be calculated as 

mx = qe mQp (A2) 

where mx is defined by Eq. (Al), r) is the quantum ef?iciency of the detector [electrons per 
photon], e is the electronic charge [coulombs per electron], and mQ is the average photon flux 
incident on the detector [photons per second]. The quantities mx and rrlQ in Eq. (A2) are both 
averages over the photon fluctuation statistics of the incident light. The meaning of the ensem- 
ble averaging process in the present context is discussed in Part I ill; in particular, the average 
in Eq. (Al) is not a time average. 

The mean photon flux incident on the detector, mQ in Eq. (A2), is given by 

mQ = Ac,et mdhv, (A3) 

where Adet is the active area of the photodetector [cm*], mE is the focal-plane irradiance 
[W-cm-*], and h v in the radiant energy [Jl per photon. 

The focal-plane irradiance mE in Eq. (A3) is calculated as 

mE = 7vomL//2ff#* S KomL, (A41 

where T, is the transmittance of the optics [dimensionless], f# is the focal-length ratio of the 
optics [dimensionless], and mL is the radiance of the scene [Wcm-*%-‘I. 

It follows from Eqs. (A2) through (A4) that 

mx = K, RI bet mL (A51 

where the current responsivity R, is defined as = qe/hv [A*W-‘I. Equation (A5) is valid for 
only uniform backgrounds that fill the sensor’s field of view. Nonuniform backgrounds can be 
characterized in terms of a radiance distribution 

37 



R. A. STEINBERG 

where cx and /3 are azimuth and elevation angles respectively. The appropriate generalization of 
Eq. (AS) when the background is nonuniform is [l] 

mx(t) = K,,R,~MTF(f)~(f)rn,(f)e”2”f’Y” df, (A6) 

where 

f = two-dimensional spatial frequency [(cycles . cm-1)21, 

MTF(f) = modulation transfer function of the optical train [dimensionless], 

v = focal-plane scan velocity 1crn.C’1 = 2nd/TF, 

d = focal length of the optics [cm], 

TF = system frame time [sl, 

and P(f) and mL(f) are the two-dimensional Fourier transforms of the quantities P(r) and 
mL (-r/d): 

P(f) = JP(r) exp(j27rf. r) dr (A7) 

and 

m&f) = J m,(-r/d) exp(j2nf . r) dr, (~8) 

where r is the two-dimensional focal-plane location vector [cml. For the detector geometry 
depicted in Fig. Al, the quantity P(r) in Eq. (A7) is defined as 

P(r) = 1, r E @de,, (A9a) 

= 0, r @  @de,. (A9b) 

It follows from Eqs. (A7) and (A9) that 

f?(O) = Ader h*l. (AlO) 

For uniform backgrounds 

Q  
DET 

1 

Fig. Al - Focal-plane geometry. The 
focal-plane irradiance is stationary in the 
coordinate system with origin 0. Vector 
r,, locates the center of a detector of area 

Ad,,. For scanning sensors r0 is a func- 
tion of time. 
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my(f) = ml. 6(f). (All) 
where 6t.J is the Dirac delta function. From Eqs. (A6), (AlO), (All), and the conventional 
MTF normalization, 

it follows that 

MTF(0) = 1, (A121 

fnx = K, RI Adct ml. (A131 
for uniform backgrounds. Equation (A13) is consistent with Eq. (AS), as expected. Finally, 
we note that the quantities mid(O) and mJf), like mx(t), are defined as ensemble averages over 
the photon fluctuation statistics of the incident light. 
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Appendix B 
EFFICIENT ESTIMATORS FOR NONSTATIONARY SHOT NOISE 

INTRODUCTION 

A main result of this report is the proposal of a new signal processor structure for generat- 
ing high-confidence estimates of the time-varying rms quantum noise induced in a 
background-limited (BLIP) sensor as it scans a nonuniform scene. This new signal-processing 
structure has the general form illustrated in Fig. Bl. For reasons that we will explain shortly, 
the processor depicted in Fig. Bl is called an “efficient shot-noise” (ESN) estimator. 

A(t) B(1) 

H&f 1 J-pi} 

Fig. Bl - Efficient estimator for nonstationary shot noise. The 
transfer functions If@) and Hocf) are related by Eq. (Bl). 
Realization of H&) requires either true dc response or dc res- 
toration (Es. B2). An important feature of this processor is that 
the expected value of 6 y is equal to the rms value of Y(t) (Eq. 
B3). All of the candidate processors in this report use the struc- 
ture shown here to perform the rms quantum-noise estimation 
function indicated in Fig. 5. 

The quantity e-,(1) in Fig. Bl is an estimate for the rms value of the random process 
Y(f); that is, 13~(t) is an estimate for m,(t). Inspection of Fig. Bl shows that Gy is esta- 
blished by cascading a linear filter Ho(f) with a square-root device and an amplifier of gain 
(2eAf)“*. Th e f requency characteristic Ho(f) is given by 

H,,(f) = @Af)-’ H(f) @H(f), (Bl) 

where @is the convolution operator (Eq. (10)). Also, e is the electronic charge (I.6 x IO-l9 C) 
and Afis the noise bandwidth of H(f), as defined by Eq. (25). The transfer function H,(f) 
given by Eq. (Bl) is always a low-pass function. From Eqs. (25) and (Bl) 

HJO) = rnjx l-f&f) = 1. (B2) 

Thus, realization of Ho(f) always requires a sensor with either true dc response or dc restora- 
tion [11,121. 
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The noise estimate &r established by the Fig. Bl processor, like X(t) and Y(t), is a ran- 
dom process. We show in this appendix that 

m,y(t) - E(&~(t>) = ay(t), (B3) 

where E(.) denotes an ensemble average over the photon-fluctuation statistics of the incident 
light [ll. Equation (B3) indicates that the ensemble average value of the noise estimate I? r is 
equal to the actual rms noise (+ y; that is, that G  y is an “unbiased”estimate for c y. Even so, & y 
might assume a sufficiently large spread of values about its average to make G  y a poor estimate 
for c y. To ensure that ey is not a poor estimate, we calculate the mean-square estimation 
error: 

u;, = E((&y - uy)*]. (B4) 

We show in this appendix that 

(~~~=e~AfAf~ (B5) 

for the Fig. Bl processor, where e is the electronic charge, Af is the noise bandwidth of H(f), 
and AfO is the noise bandwidth of Ho(f) (Eq. (Bl)). 

It follows from Eq. (B3) that G  y(t) is generally a nonstationary random process, since the 
mean value of Gy is generally nonconstant with time. It is thus surprising to see from Eq. (B5) 
that the variance of & y is time independent. 

It follows from Eqs. (B5) and (B3) and from looking ahead to Eqs. (C4) through (C6) 
that the relative mean-square estimation error of the Fig. Bl processor is extremely small: 

(crbJmey)* = (f7,Jcryj2 = O(10-6). (B6) 

According to Eq. (B6) the variance of cy is six orders of magnitude smaller than the variance 
of Y(t). This results in significant simplifications in some of the analysis (as we will show fol- 
lowing Eq. (95) for example.) 

One commonly used approach to evaluating the effectiveness of an estimator invokes the 
Cramer-Rao inequality, which provides a lower bound on (T: y 141. We evaluate the Cramer-Rao 
lower bound for “Q , in this appendix and show it to equal cri, as given by Eq. (B5). Con- 
sistent with the conventional terminology of statistics, it follows that the Fig. Bl processor 
establishes an “efficient” estimate for u y. 

Before proceding with the statistical arguments described, we will first show that the 
discrete-time implementation of Fig. Bl takes the particularly simple form shown in Fig. B2. 
The quantity T,/ in Fig. B2 is both the dwell time of the sensor and the integration/sample time 
of the postdetector filter. 

DISCRETE-TIME IMPLEMENTATION OF THE ESN ESTIMATOR 

r-‘” 
3. 
cs: 
cr; 
h 
“r 

FF 
c 

We now assume that the postdetector filter is simply an integrate, sample, and hold dev- 
ice. The waveform at the output of the postdetector filter is the discrete-time random process 
W(k), where 
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X(t)-- INTEGRATE, 
-Y(k) 

SAMPLE.8 HOLD 

Fig. B2 - Discrete-time implementation of the efficient shot-noise estima- 
tor. The generic structure depicted in Fig. Bl simplifies considerably when 
it is implemented as a discrete-time device, since we now have 
I-IV) = Ha(f). The quantity r, is both the dwell time of the sensor and 
the integration/sample time of the postdetector filter. 

I&c) = T;’ s,:;;;;; X(T) d7. 

With the function rect (.) defined as shown in Fig. B3 1131, Eq. (B7) can be written as 

W(k) = Y(kT,), 

where 

Y(t) = T;’ rect (t/Td) OX(r). 

k RECTtX) 

1 

,X 
-l/2 t/2 

Fig. B3 - Definition of the function rect fx). 
The impulse response of the postdetector filter is 
a scaled version of rect &) when the Fig. Bl pro- 
cessor is implemented in discrete time (Eq. (B9)). 

(B7) 

(B8) 

039) 

Comparing Eqs. (10) and (B9), we see that the impulse response O f the postdetector filter is 

h(t) = T;* rect (t/TJ. (BlO) 
Taking the Fourier transform of Eq. (BlO), we obtain 1131 

I = sinc(fTJ - (r.fTJ-1 sin(rfTd). (Bll) 
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It follows from Eq. (Bll) that HCf) is normalized properly (Eq. (24)): 

H(O) = m ;x H(f) = 1. 

Thus, from Eqs. (21), (25), and  (BlO), 

Af = (2TJ-t 

In addition it follows from Eqs. (142), (BlO), and (B13) that 

h,(t) = h(t). 

h 
-7 

(B12) 5  

(B13) 

(B14) 

F inally it follows from Eqs. (B13) and (B14) that the discrete-time implementation of F ig. Bl 
takes the particularly simple form depicted in F ig. B2. 

ESTIMATOR BIAS 

Our purpose in this section is to show that 

E(&- - uy) = 0. 0315)  

According to Eq. (B15) the mean  estimation error is zero, so that &r provides an  unbiased esti- 
mate for cr r. 

It follows from F ig. Bl that 

+(t) = (2eAj-)I’* B(t). 0316)  

Taking the expected value of both sides of Eq. (B16), we obtain 

m . rry = (2eAf)“* ms. (B17) 

From Eq. (B17) ant the relation mB = mA ‘/* (1 - E), which we will give as Eq. (C40), where E 
= (112) bA/2mA) , which we will give as Eq. (C42), 

me, = (2eAf mA)“* (1 - e). (B18) 

It follows from inspection of F ig. Bl that 

A(t) = h,(t) ox(t), (B19) 

where @ is the convolution operator and h,(t) is the Fourier inverse of Ha(f): 

h,(t) = F-’ W I&-) I. (B20) 

It can be  shown from Eqs. (Bl) and  (B20) and the convolution theorem for Fourier transforms 
that 

h,(t) = (2Af)-’ /r*(t). (B21) 

Thus from Eqs. (B19) and (B21) 

A(t) = (2Af)-’ /l*(t) @X(t). (B22) 

Taking the expected value of both sides of Eq. (B22), we find 

m ,(t) = (2Af)-’ /1*(t) @m,(t). 0323) 
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Substituting Eq. (B23) into Eq. (B18), we obtain 

rnkY(t) = [e/l*(r) Omx(f)l”* (1 - E). 

However, from Eq. (29) 

u2,(r) = e/r*(t) 0 mx(l). 

Thus from Eqs. (B24) and (B25) 

rnGy(f) = (~r(t)(l - ~1, 

or 

(B24) 

(B25) 

(B26) 

‘+Y-m, Y = 6 = 000-6). (B27) 
‘+Y 

According to Eq. (B27) the mean estimation error for u r is six orders of magnitude smaller 
than u r itself. The Fig. Bl processor is thus described as an asymptotically unbiased estimator 
for ur. 

MEAN-SQUARE ESTIMATION ERROR 

In deriving Eq. (B5) we first note that 

a;, = E((& - q>*) = E(ci2,) + u’y - 2uy E(&). 

It follows from E,q. (B26) that 

E(c?~) z rncy = ur(l - E), 

where again, as we will give as Eq. (C42), 

E = $(u,/2m,)*. 

Since from Fig. Bl 

G$(t) = 2eAf A(r), 

it follows from Eq. (B22) that 

&c(t) = e/l*(t) 0 X(t). 

From Eq. (B32) 

(~28) 

(B29) 

(B30) 

(B31) 

(B32) 

E{&;(t)) = e h*(t) 0 E(X(t)] 

f e 11*(t) 0 mx(t). 

From Eqs. (B33) and (B25) 

E{G;<t>] = (+2,(r). 

From Eqs. (B28), (B29), and (B34) 

CT? =2eu2y. mY 

(B33) 

(B34) 

(B35) 
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Since, as we will give as Eq. (C6), uA/mA = 0 (IO-~), it follows from Eqs. (B35) and (B30) 
that 

(u;Juy,* = 0(10-% (B36) 

verifying Eq. (B6). 

From Eqs. (B30), (B23), (B25), and equations we will derive as Eqs. (C40) through 
(C43) 

2~ = e* Af Af,-Juc. (B37) 
Equation (B5), which is one of’ the principal results of this appendix, now follows from Eqs. 
(B35) and (B37): 

ui, = e* Af Af,-,. (B38) 

CRAMER-RAO INEQUALITY 

As shown by Van Trees [4, p. 661, the mean-square estimation error defined by Eq. (B4) 
must satisfy the Cramer-Rao inequality 

a? 2 &t&+ OY (B39) 

The Cramer-Rao lower bound ‘T&s is defined as 

dRLB = -Ek&,.,,ln f,y~gyhby)~~ (B40) 

where 8: y, o y denotes the second partial derivative with respect to u r and fsyl’Ty (^I )is u y CT y 
the probability density function for + r conditioned on u r. Since &r is obtained as the square 
root of a Gaussian random process, its density function is readily adapted from the literature 
114, pp. 287-2901: 

\ I ,- 

f- rYImY =(uyu&y)-%y~ ;p;, ++ ;;+;; PGyY), 0341) 
ffv &Y I I. 

where u . my is given by Eq. (B38), ~(-1 is the unit-step function, and 4(m) is defined as 

@J(X) = (2~)~‘I* exp(-x2/2). 

Since 
(B42) 

I \ I 

cF-‘,+u; 
b 

4 2u+Ty Gpyy- 
,+.y I \ I 

(B43) 

for all values of &r, it follows from Eq. (B6) that the second term within the brackets on the 
right-hand side of Eq. (B41) contributes negligibly to fey, so that 

I \ 

f- 
“YlgY 

= (u+ry)-‘8yf#J ;-L--,” p(6.Y). 
&Y \ , 

(B44) 
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Taking the natural !ogarithm of Eq. (B44) and then the second partial derivative with respect to 
u r, we obtain 

-a&,+, (In fsylq,’ = (2~&y)-* 11 + 3(&y,/~,)41. 

Also it can be shown from Eq. (B44) that 

E((~-,/u~)~~ z 1, 

to the same order of approximation as in Eq. (C27). 

0345) 

(~46) 

From Eqs. (B40), (B45), and (B46) 

'+&LB = "3, = e* Af Af,. (B47) 

Since the mean-square estimation error ub, is equal to the Cramer-Rao lower bound, the Fig. 
Bl processor is a generator of “efficient” estimates for u r. 
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Appendix C 
SQUARE ROOT OF A GAUSSIAN RANDOM PROCESS 

INTRODUCTION 

Our purpose in this appendix is to derive simple expressions for the mean and variance of 
the square root B(t) of a Gaussian random process A (t) (Fig. 6). The mean and variance of 
A (t) are called mA (t) and uj (t) respectively. The mean and variance of B (1) are called mB(f) 
and ui (t) respectively. 

We will derive the relationships 

mB(t) s mj*(t) (Cl) 

and 
. 

uB(t)/mB(t) f $ bA(f)/mA(r)lr (C2) 

subject to the assumption that 

uA(f)/mA (t) << 1. (C3) 

The validity of Eq. (C3) is assured in that the process A (I) is the output of a background- 
limited (BLIP) infrared sensor, for which 

uj = 2eAfornA, (C4) 

where e is the electronic charge and Afo is the noise bandwidth (Eq. (25)) of the filter No(J) 
(Fig. 6). Although Eq. (C4) is only approximately correct for time-varying mA (t) (as we will 
see from Eq. (108)), it can be used to provide an order-of-magnitude estimate for uA/mA. We 
assume for illustrative purposes that 

mA = lo-9 A (C5a) 
and 

Afo= 2500 Hz. 

It follows from Eqs. (C4) and (C5) that 

uA/mA = o(10-3), 

justifying Eq. (C3). 

MATHEMATICAL PRELIMINARIES 

We write the probability density function of A (t) as 

(C5b) 

(C6) 

fA (a) = ui’ #J 
a - mA 

I I uA ’ 
(C7) 
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where we define 4 (.) as the normalized Gaussian density: 

C#I(X) E (2~)~“~ exp (-x*/2). 

Since 
B(t) = IA (t)[“*, 

it follows from Eq. (C7) that 

(C8) 

(C9) 

mB= VA -I s-1 Iall/*+ Ia a,“” 1 da. (ClO) 

Also, 
ui = E(B*] - rnj, 

where E(e) is the statistical expectation operator and 

(Cl 1) 

-1 E(B*) = (+A (C12) 

We devote the remainder of this appendix to developing estimates for Eqs. (ClO) and (C12). 

EVALUATION OF Eb.12) 

We now write Eq. (C12) as 

where 

E{B2) = I1 + Z2, (C13). 

II = uil Jam a 4 1” iArnA]da 

and 

(Cl41 

(Cl51 

Moreover we write Eq. (C14) as 

II = II, + 112, (Cl61 

where 

z,, s uil s-1 a 4 
I I 

a rAmA da = mA 

and 

Z12 z uil Jo= a 4 da = 12. 

From Eqs. (C13), (C16), (C17), and (Cl@ 
E{B*) = m,.j + 2z2, 

where 12 is given by Eq. (Cl%. 

(Cl81 

(Cl91 
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We now write Eq. (C15) as 

12 = UA’ Jorn a 4 (a/uA)g(a) da, cc201 

where by definition 

gb7)~4[a~~] I C[f-1. (C21) 

It can be shown that 

max. g(a) = g(o) = (2n)“2 +(mA/uA). 
O<o<m cc221 

From Eqs. (C20) and (C22) 

12 < u;’ (2m)“* QitmA/uA) so” a$(a/uA) da. 

Since the integral in Eq. (C23) evaluates exactly as uj, it follows that 

12 < (h)“* uA +tmA/uA)- 

From Eqs. (Cl91 and (C24) 

E(B*) = mA (1 + eA), 

where 

(C23) 

(C24) 

(C25) 

E,., < 2(2r) ‘q$-+ [%I. (C26) 

It follows from Eqs. (C61, (C251, and (C26) that the quantity EA is truly negligible and that to 
all intents 

E(B*) = mA. CC271 

EVALUATION OF mB 

We now write Eq. (Cl01 as 

where 

mB = 13 + 14, (C28) 

-1 13 - UA s 0 
ma’/24 a-mA I I da , 

VA 

and 

14 - u-j’ s a + mA 
0 I I da. 

UA 

(C29) 

(C30) 

Equation (C30) can be estimated by means similar to those used in estimating Eq. (Cl51 to 
obtain the bound 

14 < mJ* [$ [$]*+[z]]. (C31) 

c= 
z c-? 
E w 
e.49 h-r 
T 
K 
c 
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It follows from Eqs. (C6) and (C31) that 

14 = 0, 

to the same order of approximation as Eq. (C27). 
(C32) 

The first step in evaluating Z3 is to write Eq. (C29) as 
‘I2 

I3 = m,f* s -(mAiu,) I I II 1 + $ u 4(u)du. cc331 

Writing a binomial expansion for the square root of the bracketed quantity in Eq. (C33), we 
obtain 

Z3= rn!:*[Z,,+ i[z]Z3,- +[z12ZJ2+ . ..I_ (C34) 

where 

Z3j - Je;mA,vAj uj+(u)du , j = 1, 2, 3. 

It can be shown from Eqs. (C6) and (C35) that 

130 = 132 = 1 

and 

13’ = 0 

to the same order of approximation as Eqs. (C27) and (C32). 

(C35) 

(C36) 

cc371 

From Eqs. (C28), (C32), (C34), (C36), and (C37) 

mB=m,j’*[l-+ [f&l’]. (C38) 

From Eqs. (Cl l), (C27), and (C38) 

I I 2 
uA 

uizmA K cc391 

From Eqs. (C6), (C38), and (C39) 

mB = ml/* (1 - E) (C40) 
and 

uB/mB = + (uA/mA) t1 + E)p cc411 

where 

E = $(uA/2mA)* = o(lop6). (C42) 

Thus, Eqs. (Cl) and (C2) have been validated, and the relative errors have been estimated. 
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Finally from Eqs. (C4) and (C39) 

c 
2 
c? 
r 
>:r 
CR 
4.97 
C 
T 
h 
r-r 
I;: CT;= 

2eAfo mA 

4m.4 
= eAfd2. (C43) 

It is interesting to compare Eqs. (C4) and (C43). According to Eq. (C4) the noise at the input 
to the square-root device is a function of mA (and hence the mean photon flux incident on the 
detector). However, Eq. (C43) indicates that the noise at the output of the square-root device 
is independent of the mean photon flux. 
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